Sparse Signal Estimation by Maximally Sparse Convex Optimization

被引:136
|
作者
Selesnick, Ivan W. [1 ]
Bayram, Ilker [2 ]
机构
[1] NYU Polytech Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey
基金
美国国家科学基金会;
关键词
Convex optimization; sparse optimization; sparse regularization; basis pursuit; lasso; deconvolution; L1; norm; threshold function; non-convex optimization; NONCONCAVE PENALIZED LIKELIHOOD; MINIMIZATION METHODS; RECONSTRUCTION; SHRINKAGE; SELECTION; DECONVOLUTION; DECOMPOSITION; ALGORITHMS; RECOVERY;
D O I
10.1109/TSP.2014.2298839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e. g., sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.
引用
收藏
页码:1078 / 1092
页数:15
相关论文
共 50 条
  • [1] On the Limitation of Convex Optimization for Sparse Signal Segmentation
    Rajmic, Pavel
    Novosadova, Michaela
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 550 - 554
  • [2] Convex Optimization Algorithms for Sparse Signal Reconstruction
    Jovanovic, Filip
    Miladinovic, Dragana
    Radunovic, Natasa
    2020 9TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2020, : 372 - 375
  • [3] Maximally Sparse Arrays Via Sequential Convex Optimizations
    Prisco, Giancarlo
    D'Urso, Michele
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 : 192 - 195
  • [4] Maximally Sparse Near-field Shaped Focusing Arrays by Sequential Convex Optimization
    Huang, Zi Xuan
    Cheng, Yu Jian
    PROCEEDINGS OF THE 2018 IEEE 7TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2018, : 412 - 413
  • [5] NON-CONVEX OPTIMIZATION FOR SPARSE INTERFEROMETRIC PHASE ESTIMATION
    Chemudupati, Satvik
    Pokala, Praveen Kumar
    Seelamantula, Chandra Sekhar
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2885 - 2889
  • [6] Successive Convex Approximation Algorithms for Sparse Signal Estimation With Nonconvex Regularizations
    Yang, Yang
    Pesavento, Marius
    Chatzinotas, Symeon
    Ottersten, Bjorn
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1286 - 1302
  • [7] Successive Convex Approximation Algorithms for Sparse Signal Estimation with Nonconvex Regularizations
    Yang, Yang
    Pesavento, Marius
    Chatzinotas, Symeon
    Ottersten, Bjoern
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 356 - 360
  • [8] Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
    Chen, Po-Yu
    Selesnick, Ivan W.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (13) : 3464 - 3478
  • [9] GRADIENT PROJECTION FOR LINEARLY CONSTRAINED CONVEX OPTIMIZATION IN SPARSE SIGNAL RECOVERY
    Harmany, Zachary
    Thompson, Daniel
    Willett, Rebecca
    Marcia, Roummel F.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3361 - 3364
  • [10] Adaptive refinement in maximally sparse harmonic signal retrieval
    Cabrera, SD
    Malladi, S
    Mulpuri, R
    Brito, AE
    IEEE 11TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, 2004, : 231 - 235