On the chaos synchronization phenomena

被引:140
|
作者
Femat, R [1 ]
Solís-Perales, G [1 ]
机构
[1] Univ Autonoma San Luis Potosi, San Luis Potosi 78231, Mexico
关键词
chaos synchronization; feedback chaos control;
D O I
10.1016/S0375-9601(99)00667-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaos synchronization is an important problem in the nonlinear science. However, several phenomena can be found in the synchronization systems. Here, we discuss several phenomena involved with the chaos synchronization problem. Between the involved phenomena, one can find: Complete, Practical and Partial Synchronization. A feedback controller is used to illustrate such synchronization phenomena. The feedback was recently reported and involves robustness features. Such control actions can induce one more phenomena: the Almost Synchronization (AS). In addition, it is shown that the AS can be found if the master and slave models are strictly different. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [1] On the chaos synchronization phenomena
    Femat, Ricardo
    Solís-Perales, Gualberto
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 262 (01): : 50 - 60
  • [2] Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling
    Peil, Michael
    Larger, Laurent
    Fischer, Ingo
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [3] Chaos synchronization
    Parlitz, U
    Junge, L
    Kocarev, L
    NEW DIRECTIONS IN NONLINEAR AND OBSERVER DESIGN, 1999, 244 : 511 - 525
  • [4] CHAOS SYNCHRONIZATION
    Umut, Omur
    Poria, Swarup
    Patra, Rajat
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2007, 5 (01) : 13 - 18
  • [5] SYNCHRONIZATION AND CHAOS
    TANG, YS
    MEES, AI
    CHUA, LO
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (09): : 620 - 626
  • [6] Deep Chaos Synchronization
    Mobini, Majid
    Kaddoum, Georges
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 : 1571 - 1582
  • [7] The geometry of chaos synchronization
    Barreto, E
    Josic, K
    Morales, CJ
    Sander, E
    So, P
    CHAOS, 2003, 13 (01) : 151 - 164
  • [8] Generalized synchronization of chaos
    Kocarev, L
    Parlitz, U
    Stojanovski, T
    Panovski, L
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 116 - 119
  • [9] Patterns of chaos synchronization
    Kestler, Johannes
    Kopelowitz, Evi
    Kanter, Ido
    Kinzel, Wolfgang
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2008, 77 (04):
  • [10] Dual synchronization of chaos
    ATR Adaptive Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto
    619-0288, Japan
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (03):