iEnsemble: A Framework for Committee Machine Based on Multiagent Systems with Reinforcement Learning

被引:1
|
作者
Uber Junior, Arnoldo [1 ]
de Freitas Filho, Paulo Jose [1 ]
Silveira, Ricardo Azambuja [1 ]
Costa e Lima, Mariana Dehon [1 ]
Reitz, Rodolfo Wilvert [1 ]
机构
[1] Fed Univ Santa Catarina UFSC, Postgrad Program Comp Sci PPGCC, Florianopolis, SC, Brazil
关键词
Committee machine; Ensemble; Multiagent Systems; Reinforcement learning; ENSEMBLES;
D O I
10.1007/978-3-319-62428-0_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Machine Learning is one of the areas of Artificial Intelligence whose objective is the development of computational techniques for knowledge and building systems able to acquire knowledge automatically. One of the main challenges of learning algorithms is to maximize generalization. Thus the board machine, or a combination of more of a learning machine approach known in literature with the denomination ensemble along with the theory agents, become a promising alternative in this challenge. In this context, this research proposes the iEnsemble framework, which aims to provide a model of the ensemble through a multi-agent system architecture, where generalization, combination and learning are made through agents, through the performance of their respective roles. In the proposal, the agents follow each their life cycle and also perform the iStacking algorithm. This algorithm is based on Stacking method, which uses the reinforcement learning to define the result of the Ensemble. To validate the initial proposal of the framework, some experiments have been performed and the results obtained and limitations are presented.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 50 条
  • [1] iEnsemble2: Committee Machine Model-Based on Heuristically-Accelerated Multiagent Reinforcement Learning
    Uber Junior, Arnoldo
    de Freitas Filho, Paulo Jose
    Silveira, Ricardo Azambuja
    Mueloschat, Juliano
    COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS, 2019, 772 : 363 - 374
  • [2] An Advising Framework for Multiagent Reinforcement Learning Systems
    da Silva, Felipe Leno
    Glatt, Ruben
    Reali Costa, Anna Helena
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4913 - 4914
  • [3] An Evolutionary Transfer Reinforcement Learning Framework for Multiagent Systems
    Hou, Yaqing
    Ong, Yew-Soon
    Feng, Liang
    Zurada, Jacek M.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (04) : 601 - 615
  • [4] Optimal tracking agent: a new framework of reinforcement learning for multiagent systems
    Cao, Weihua
    Chen, Gang
    Chen, Xin
    Wu, Min
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2013, 25 (14): : 2002 - 2015
  • [5] An Efficient Transfer Learning Framework for Multiagent Reinforcement Learning
    Yang, Tianpei
    Wang, Weixun
    Tang, Hongyao
    Hao, Jianye
    Meng, Zhaopeng
    Mao, Hangyu
    Li, Dong
    Liu, Wulong
    Zhang, Chengwei
    Hu, Yujing
    Chen, Yingfeng
    Fan, Changjie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Coordination in multiagent reinforcement learning systems
    Kamal, MAS
    Murata, J
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2004, 3213 : 1197 - 1204
  • [7] Machine Learning Data Market Based on Multiagent Systems
    Baghcheband, Hajar
    Soares, Carlos
    Reis, Luis Paulo
    IEEE INTERNET COMPUTING, 2024, 28 (04) : 7 - 13
  • [8] Opportunities for multiagent systems and multiagent reinforcement learning in traffic control
    Bazzan, Ana L. C.
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2009, 18 (03) : 342 - 375
  • [9] Opportunities for multiagent systems and multiagent reinforcement learning in traffic control
    Ana L. C. Bazzan
    Autonomous Agents and Multi-Agent Systems, 2009, 18 : 342 - 375
  • [10] A survey on transfer learning for multiagent reinforcement learning systems
    Da Silva, Felipe Leno
    Reali Costa, Anna Helena
    Journal of Artificial Intelligence Research, 2019, 64 : 645 - 703