Imitation Learning for Playing Shogi Based on Generative Adversarial Networks

被引:0
|
作者
Wan, Shanchuan [1 ]
Kaneko, Tomoyuki [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Interdisciplinary Informat Studies, Tokyo, Japan
[2] Univ Tokyo, Interfac Initiat Informat Studies, Tokyo, Japan
[3] JST, PRESTO, Kawaguchi, Saitama, Japan
关键词
imitation learning; board games; computer shogi; neural networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For imitation learning in games, AI programs commonly learn thinking and evaluating methods from professional players' game records. However, compared to the total number of all possible game states, top players' records are extremely insufficient. The limited amount of high -quality learning materials may become the bottleneck of training artificial intelligence. We proposed to introduce the idea of Generative Adversarial Networks into game programming, and validated its effectiveness in playing Shogi, a Japanese Chess game. The proposed method is experimentally proved to be capable to alleviate the data insufficiency problem and build more competitive AI programs than conventional supervised training methods.
引用
收藏
页码:92 / 95
页数:4
相关论文
共 50 条
  • [1] Generative Adversarial Imitation Learning
    Ho, Jonathan
    Ermon, Stefano
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [2] A Survey of Imitation Learning Based on Generative Adversarial Nets
    Lin J.-H.
    Zhang Z.-Z.
    Jiang C.
    Hao J.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (02): : 326 - 351
  • [3] Ranking-Based Generative Adversarial Imitation Learning
    Shi, Zhipeng
    Zhang, Xuehe
    Fang, Yu
    Li, Changle
    Liu, Gangfeng
    Zhao, Jie
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8967 - 8974
  • [4] Quantum generative adversarial imitation learning
    Xiao, Tailong
    Huang, Jingzheng
    Li, Hongjing
    Fan, Jianping
    Zeng, Guihua
    NEW JOURNAL OF PHYSICS, 2023, 25 (03):
  • [5] Deterministic generative adversarial imitation learning
    Zuo, Guoyu
    Chen, Kexin
    Lu, Jiahao
    Huang, Xiangsheng
    NEUROCOMPUTING, 2020, 388 : 60 - 69
  • [6] GACS: Generative Adversarial Imitation Learning Based on Control Sharing
    Huaiwei SI
    Guozhen TAN
    Dongyu LI
    Yanfei PENG
    Journal of Systems Science and Information, 2023, 11 (01) : 78 - 93
  • [7] A Bayesian Approach to Generative Adversarial Imitation Learning
    Jeon, Wonseok
    Seo, Seokin
    Kim, Kee-Eung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] Urban Vehicle Trajectory Generation Based on Generative Adversarial Imitation Learning
    Wang, Min
    Cui, Jianqun
    Wong, Yew Wee
    Chang, Yanan
    Wu, Libing
    Jin, Jiong
    IEEE Transactions on Vehicular Technology, 2024, 73 (12) : 18237 - 18249
  • [9] Robot Manipulation Learning Using Generative Adversarial Imitation Learning
    Jabri, Mohamed Khalil
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4893 - 4894
  • [10] Generative Adversarial Imitation Learning from Failed Experiences
    Zhu, Jiacheng
    Lin, Jiahao
    Wang, Meng
    Chen, Yingfeng
    Fan, Changjie
    Jiang, Chong
    Zhang, Zongzhang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13997 - 13998