Applying Machine Learning to the Problem of Choosing a Heuristic to Select the Variable Ordering for Cylindrical Algebraic Decomposition

被引:0
|
作者
Huang, Zongyan [1 ]
England, Matthew [2 ]
Wilson, David [2 ]
Davenport, James H. [2 ]
Paulson, Lawrence C. [1 ]
Bridge, James [1 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Bath, Dept Comp Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
machine learning; support vector machine; symbolic computation; cylindrical algebraic decomposition; problem formulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real -closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.
引用
收藏
页码:92 / 107
页数:16
相关论文
共 50 条
  • [1] Comparing Machine Learning Models to Choose the Variable Ordering for Cylindrical Algebraic Decomposition
    England, Matthew
    Florescu, Dorian
    [J]. INTELLIGENT COMPUTER MATHEMATICS, CICM 2019, 2019, 11617 : 93 - 108
  • [2] New Heuristic to Choose a Cylindrical Algebraic Decomposition Variable Ordering Motivated by Complexity Analysis
    del Rio, Tereso
    England, Matthew
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 300 - 317
  • [3] Variable Ordering Selection for Cylindrical Algebraic Decomposition with Artificial Neural Networks
    Chen, Changbo
    Zhu, Zhangpeng
    Chi, Haoyu
    [J]. MATHEMATICAL SOFTWARE - ICMS 2020, 2020, 12097 : 281 - 291
  • [4] Using Machine Learning to Improve Cylindrical Algebraic Decomposition
    Huang, Zongyan
    England, Matthew
    Wilson, David J.
    Bridge, James
    Davenport, James H.
    Paulson, Lawrence C.
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2019, 13 (04) : 461 - 488
  • [5] Using Machine Learning to Improve Cylindrical Algebraic Decomposition
    Zongyan Huang
    Matthew England
    David J. Wilson
    James Bridge
    James H. Davenport
    Lawrence C. Paulson
    [J]. Mathematics in Computer Science, 2019, 13 : 461 - 488
  • [6] Choosing better variable orderings for cylindrical algebraic decomposition via exploiting chordal structure
    Li, Haokun
    Xia, Bican
    Zhang, Huiying
    Zheng, Tao
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2023, 116 : 324 - 344
  • [7] Suggesting Variable Order for Cylindrical Algebraic Decomposition via Reinforcement Learning
    Jia, Fuqi
    Dong, Yuhang
    Liu, Minghao
    Huang, Pei
    Ma, Feifei
    Zhang, Jian
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Explainable AI Insights for Symbolic Computation: A case study on selecting the variable ordering for cylindrical algebraic decomposition
    Pickering, Lynn
    Almajano, Tereso del Rio
    England, Matthew
    Cohen, Kelly
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2024, 123
  • [9] Using Machine Learning to Decide When to Precondition Cylindrical Algebraic Decomposition With Groebner Bases
    Huang, Zongyan
    England, Matthew
    Davenport, James H.
    Paulson, Lawrence C.
    [J]. PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 45 - 52
  • [10] Machine learning techniques to select variable stars
    Garcia-Varela, Alejandro
    Perez, Muriel
    Sabogal, Beatriz
    Quiroz, Adolfo
    [J]. WIDE-FIELD VARIABILITY SURVEYS: A 21ST CENTURY PERSPECTIVE, 2017, 152