Curvature estimates for immersed hypersurfaces in Riemannian manifolds

被引:16
|
作者
Guan, Pengfei [1 ]
Lu, Siyuan [1 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke O, Montreal, PQ H3A 0B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NONNEGATIVE GAUSS CURVATURE; QUASI-LOCAL MASS; ISOMETRIC EMBEDDINGS; WEYL PROBLEM; THEOREM;
D O I
10.1007/s00222-016-0688-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish mean curvature estimate for immersed hypersurface with nonnegative extrinsic scalar curvature in Riemannian manifold (Nn+1,(g) over bar )through regularity study of a degenerate fully nonlinear curvature equation in general Riemannian manifold. The estimate has a direct consequence for the Weyl isometric embedding problem of (S-2, g) in 3-dimensional warped product space (N-3,(g) over bar) . We also discuss isometric embedding problem in spaces with horizon in general relativity, like the Anti-de Sitter-Schwarzschild manifolds and the Reissner-Nordstrom manifolds.
引用
收藏
页码:191 / 215
页数:25
相关论文
共 50 条