Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem

被引:48
|
作者
Kou, Kit Ian [1 ]
Morais, Joao [2 ]
机构
[1] Univ Macau, Fac Sci & Technol, Dept Math, Macau, Peoples R China
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, Aveiro, Portugal
关键词
Quaternionic analysis; Quaternion linear canonical transform; Asymptotic behaviour; Positive definitely measure; Bochner-Minlos theorem; UNCERTAINTY PRINCIPLE; FOURIER;
D O I
10.1016/j.amc.2014.08.090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There have been numerous proposals in the literature to generalize the classical Fourier transform by making use of the Hamiltonian quaternion algebra. The present paper reviews the quaternion linear canonical transform (QLCT) which is a generalization of the quaternion Fourier transform and it studies a number of its properties. In the first part of this paper, we establish a generalized Riemann-Lebesgue lemma for the (right-sided) QLCT. This lemma prescribes the asymptotic behaviour of the QLCT extending and refining the classical Riemann-Lebesgue lemma for the Fourier transform of 2D quaternion signals. We then introduce the QLCT of a probability measure, and we study some of its basic properties such as linearity, reconstruction formula, continuity, boundedness, and positivity. Finally, we extend the classical Bochner-Minlos theorem to the QLCT setting showing the applicability of our approach. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 50 条
  • [1] Bochner-Minlos Theorem and Quaternion Fourier Transform
    Georgiev, S.
    Morais, J.
    Kou, K. I.
    Sproessig, W.
    [J]. QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : 105 - 120
  • [2] A Bochner-Minlos theorem with an integrability condition
    Ouerdiane, H
    Rezgui, A
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2000, 3 (02) : 297 - 302
  • [3] Bochner-Minlos theorem in the frame of real clifford algebras
    Svetlin G. Georgiev
    Rim Jday
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 137 - 149
  • [4] Bochner-Minlos theorem in the frame of real clifford algebras
    Georgiev, Svetlin G.
    Jday, Rim
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 137 - 149
  • [5] Discrete quaternion linear canonical transform
    Urynbassarova, Didar
    Teali, Aajaz A.
    Zhang, Feng
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 122
  • [6] INTRODUCTION TO QUATERNION LINEAR CANONICAL TRANSFORM
    Gudadhe, Alka S.
    Thakare, Pranay P.
    [J]. JOURNAL OF SCIENCE AND ARTS, 2014, (01): : 45 - 52
  • [7] Modified convolution theorem for one-sided quaternion linear canonical transform
    Resnawati
    Musdalifah, Selvy
    [J]. FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [8] Spectrum of quaternion signals associated with quaternion linear canonical transform
    Prasad, Akhilesh
    Kundu, Manab
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 764 - 775
  • [9] Jackson Theorems for the Quaternion Linear Canonical transform
    A. Achak
    O. Ahmad
    A. Belkhadir
    R. Daher
    [J]. Advances in Applied Clifford Algebras, 2022, 32
  • [10] Uncertainty Principles for The Quaternion Linear Canonical Transform
    Achak, A.
    Abouelaz, A.
    Daher, R.
    Safouane, N.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)