Left invariant metrics and curvatures on simply connected three-dimensional Lie groups

被引:51
|
作者
Ha, Ku Yong [2 ]
Lee, Jong Bum [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Seoul Natl Univ, Res Inst Basic Sci, Seoul 151747, South Korea
关键词
Automorphism group; curvature; left invariant metric; three-dimensional Lie groups;
D O I
10.1002/mana.200610777
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each simply connected three-dimensional Lie group we determine the automorphism group, classify the left invariant Riemannian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the principal Ricci curvatures, the scalar curvature and the sectional curvatures as functions of left invariant metrics on the three-dimensional Lie groups. Our results improve a bit of Milnor's results of [7] in the three-dimensional case, and Kowalski and Nikvcevic's results [6, Theorems 3.1 and 4. 1]. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:868 / 898
页数:31
相关论文
共 50 条