Mining Battlefield Information Using Ensemble Classifiers

被引:0
|
作者
Xu, Xiansheng [1 ]
Wang, Tao [1 ]
Ouyang, Zhenzheng [2 ]
机构
[1] Nanjing Army Command Coll, Dept 2, Nanjing, Jiangsu, Peoples R China
[2] Natl Univ Def Technol, Scince Sch, Changsha, Hunan, Peoples R China
关键词
Battlifildl information; data streams; ensemble classifiers;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To help handle battlefield information superiority to decision superiority (i.e. to rapidly arrive at better decisions than adversaries can respond to), many scientific, technical and technological challenges must be addressed. The most critical of those are information fusion and management at different levels, communication. This paper decribes battlefield information as data streams and mining it using ensemble classifiers, and focusing on handling noisy and concept drift datas. Our theoretical and empirical study shows that our framework is superior and more robust to averaging ensemble for noisy battlefield information data streams.
引用
收藏
页码:506 / 509
页数:4
相关论文
共 50 条
  • [1] Mining Smart Learning Analytics Data Using Ensemble Classifiers
    Kausar, Samina
    Oyelere, Solomon Sunday
    Salal, Yass Khudheir
    Hussain, Sadiq
    Cifci, Mehmet Akif
    Hilcenko, Slavoljub
    Iqbal, Muhammad Shahid
    Zhu Wenhao
    Xu Huahu
    [J]. INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2020, 15 (12) : 81 - 102
  • [2] Mining SNPs from EST sequences using filters and ensemble classifiers
    Wang, J.
    Zou, Q.
    Guo, M. Z.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2010, 9 (02): : 820 - 834
  • [3] Mining Concept-Drifting and Noisy Data Streams using Ensemble Classifiers
    Ouyang, Zhenzheng
    Zhou, Min
    Wang, Tao
    Wu, Quanyuan
    [J]. 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 360 - +
  • [4] A similarity evaluation technique for data mining with an ensemble of classifiers
    Puuronen, S
    Terziyan, V
    [J]. 11TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATION, PROCEEDINGS, 2000, : 1155 - 1159
  • [5] Predicting construction cost overruns using text mining, numerical data and ensemble classifiers
    Williams, Trefor P.
    Gong, Jie
    [J]. AUTOMATION IN CONSTRUCTION, 2014, 43 : 23 - 29
  • [6] An Efficient Method for Battlefield Information Data Stream Mining
    Wang, Ning
    Wang, Tao
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 723 - 725
  • [7] Early Thyroid Risk Prediction by Data Mining and Ensemble Classifiers
    Alshayeji, Mohammad H.
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (03): : 1195 - 1213
  • [8] Malware Classification Using Ensemble Classifiers
    Hijazi, Mohd Hanafi Ahmad
    Beng, Tan Choon
    Mountstephens, James
    Lim, Yuto
    Nisar, Kashif
    [J]. ADVANCED SCIENCE LETTERS, 2018, 24 (02) : 1172 - 1176
  • [9] Hybrid Ensemble of Classifiers using Voting
    Gandhi, Isha
    Pandey, Mrinal
    [J]. 2015 INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT), 2015, : 399 - 404
  • [10] Energy Disaggregation using Ensemble of Classifiers
    Shahriar, Md. Sumon
    Rahman, Ashfaqur
    [J]. 2013 IEEE TENCON SPRING CONFERENCE, 2013, : 161 - 164