RNASeqMetaDB: a database and web server for navigating metadata of publicly available mouse RNA-Seq datasets

被引:8
|
作者
Guo, Zhengyu [1 ,2 ]
Tzvetkova, Boriana [3 ,4 ]
Bassik, Jennifer M. [5 ,6 ]
Bodziak, Tara [5 ,6 ]
Wojnar, Brianna M. [5 ,6 ]
Qiao, Wei [1 ]
Obaida, Md A. [1 ]
Nelson, Sacha B. [3 ,4 ]
Hu, Bo Hua [5 ,6 ]
Yu, Peng [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, TEES AgriLife Ctr Bioinformat & Genom Syst Engn, College Stn, TX 77843 USA
[3] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[4] Brandeis Univ, Ctr Behav Genom, Waltham, MA 02454 USA
[5] SUNY Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA
[6] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA
关键词
NETWORKS; ONTOLOGY; ARCHIVE; GROWTH; UPDATE;
D O I
10.1093/bioinformatics/btv503
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene targeting is a protocol for introducing a mutation to a specific gene in an organism. Because of the importance of in vivo assessment of gene function and modeling of human diseases, this technique has been widely adopted to generate a large number of mutant mouse models. Due to the recent breakthroughs in high-throughput sequencing technologies, RNA-Seq experiments have been performed on many of these mouse models, leading to hundreds of publicly available datasets. To facilitate the reuse of these datasets, we collected the associated metadata and organized them in a database called RNASeqMetaDB. The metadata were manually curated to ensure annotation consistency. We developed a web server to allow easy database navigation and data querying. Users can search the database using multiple parameters like genes, diseases, tissue types, keywords and associated publications in order to find datasets that match their interests. Summary statistics of the metadata are also presented on the web server showing interesting global patterns of RNA-Seq studies.
引用
收藏
页码:4038 / 4040
页数:3
相关论文
共 36 条
  • [1] Massive mining of publicly available RNA-seq data from human and mouse
    Alexander Lachmann
    Denis Torre
    Alexandra B. Keenan
    Kathleen M. Jagodnik
    Hoyjin J. Lee
    Lily Wang
    Moshe C. Silverstein
    Avi Ma’ayan
    Nature Communications, 9
  • [2] Massive mining of publicly available RNA-seq data from human and mouse
    Lachmann, Alexander
    Torre, Denis
    Keenan, Alexandra B.
    Jagodnik, Kathleen M.
    Lee, Hoyjin J.
    Wang, Lily
    Silverstein, Moshe C.
    Ma'ayan, Avi
    NATURE COMMUNICATIONS, 2018, 9
  • [3] hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data
    Chen, Li
    Wu, George
    Ji, Hongkai
    BIOINFORMATICS, 2011, 27 (10) : 1447 - 1448
  • [4] SFMetaDB: a comprehensive annotation of mouse RNA splicing factor RNA-Seq datasets
    Li, Jin
    Tseng, Ching-San
    Federico, Antonio
    Ivankovic, Franjo
    Huang, Yi-Shuian
    Ciccodicola, Alfredo
    Swanson, Maurice S.
    Yu, Peng
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2017,
  • [5] ICARUS, an interactive web server for single cell RNA-seq analysis
    Jiang, Andrew
    Lehnert, Klaus
    You, Linya
    Snell, Russell G.
    NUCLEIC ACIDS RESEARCH, 2022, 50 (W1) : W427 - W433
  • [6] alona: a web server for single-cell RNA-seq analysis
    Franzen, Oscar
    Bjorkegren, Johan L. M.
    BIOINFORMATICS, 2020, 36 (12) : 3910 - 3912
  • [7] ICARUS, an interactive web server for single cell RNA-seq analysis
    Jiang, Andrew
    Lehnert, Klaus
    You, Linya
    Snell, Russell G.
    NUCLEIC ACIDS RESEARCH, 2022,
  • [8] CHARTS: a web application for characterizing and comparing tumor subpopulations in publicly available single-cell RNA-seq data sets
    Matthew N. Bernstein
    Zijian Ni
    Michael Collins
    Mark E. Burkard
    Christina Kendziorski
    Ron Stewart
    BMC Bioinformatics, 22
  • [9] CHARTS: a web application for characterizing and comparing tumor subpopulations in publicly available single-cell RNA-seq data sets
    Bernstein, Matthew N.
    Ni, Zijian
    Collins, Michael
    Burkard, Mark E.
    Kendziorski, Christina
    Stewart, Ron
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] A web server for comparative analysis of single-cell RNA-seq data
    Amir Alavi
    Matthew Ruffalo
    Aiyappa Parvangada
    Zhilin Huang
    Ziv Bar-Joseph
    Nature Communications, 9