Multilevel Richardson-Romberg extrapolation

被引:20
|
作者
Lemaire, Vincent [1 ]
Pages, Gilles [1 ]
机构
[1] Sorbonne Univ, UPMC Paris 6, UMR 7599, Lab Probabilites & Modeles Aleatoires, Paris, France
关键词
Euler scheme; multilevel Monte Carlo estimator; multistep; nested Monte Carlo method; option pricing; Richardson-Romberg extrapolation; STOCHASTIC DIFFERENTIAL-EQUATIONS; MONTE-CARLO; EULER SCHEME; SIMULATION; APPROXIMATION; DIFFUSION; SDES;
D O I
10.3150/16-BEJ822
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose and analyze a Multilevel-Richardson Romberg (ML2R) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [Monte Carlo Methods Appl. 13 (2007) 37-70] and the variance control resulting from Multilevel Monte Carlo (MLMC) paradigm (see [Ann. AppL Probab. 24 (2014) 1585-1620, In Large-Scale Scientific Computing (2001) 58-67 Berlin]). Thus, in standard frameworks like discretization schemes of diffusion processes, the root mean squared error (RMSE) epsilon > 0 can be achieved with our ML2R estimator with a global complexity of epsilon(-2) log(1/epsilon) instead of epsilon(-2)(log(1/epsilon))(2) with the standard MLMC method, at least when the weak error E[Y-h] - E[Y-0] of the biased implemented estimator Yh can be expanded at any order in h and parallel to Y-h - Y-0 parallel to(2) = 0(h(1/2)). The ML2R estimator is then halfway between a regular MLMC and a virtual unbiased Monte Carlo. When the strong error parallel to Y-h - Y-0 parallel to(2) = 0(h(beta/2)), beta < 1, the gain of ML2R over MLMC becomes even more striking. We carry out numerical simulations to compare these estimators in two settings: vanilla and path-dependent option pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation.
引用
收藏
页码:2643 / 2692
页数:50
相关论文
共 50 条
  • [1] An Antithetic Approach of Multilevel Richardson-Romberg Extrapolation Estimator for Multidimensional SDES
    Mbaye, Cheikh
    Pages, Gilles
    Vrins, Frederic
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 482 - 491
  • [2] Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation
    Lemaire, Vincent
    Pages, Gilles
    Panloup, Fabien
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (04): : 1562 - 1596
  • [3] A multi-step Richardson-Romberg extrapolation method for stochastic approximation
    Frikha, N.
    Huang, L.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4066 - 4101
  • [4] Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity
    Pages, Gilles
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2007, 13 (01): : 37 - 70
  • [5] RICHARDSON EXTRAPOLATION AND ROMBERG INTEGRATION
    DUTKA, J
    [J]. HISTORIA MATHEMATICA, 1984, 11 (01) : 3 - 21
  • [6] Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo
    Durmus, Alain
    Simsekli, Umut
    Moulines, Eric
    Badeau, Roland
    Richard, Gael
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [7] CAUTIOUS ROMBERG EXTRAPOLATION
    COHEN, AM
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1980, 8 (02) : 137 - 147
  • [8] RICHARDSON EXTRAPOLATION
    MAKAI, M
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1985, 89 (04) : 382 - 383
  • [9] RICHARDSON EXTRAPOLATION AND THE BOOTSTRAP
    BICKEL, PJ
    YAHAV, JA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (402) : 387 - 393
  • [10] COMPLETED RICHARDSON EXTRAPOLATION
    ROACHE, PJ
    KNUPP, PM
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (05): : 365 - 374