Bergen Lecture on (partial derivative)over-bar-Neumann Problem

被引:0
|
作者
Chang, Der-Chen [1 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
关键词
Cauchy-Riemann equation; (partial derivative)over-bar-Neumann problem; Heisenberg group; Carnot-Caratheodory distance; Calderon operator; Cauchy-Szego projection; pseudo-differential operators; singular integral operators; PSEUDO-CONVEX MANIFOLDS; SINGULAR-INTEGRALS; FUNDAMENTAL SOLUTION; HARMONIC INTEGRALS; HILBERT INTEGRALS; DOMAINS; KERNELS; COMPLEX;
D O I
10.1007/978-3-7643-9906-1_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of subset of Cn+1 be a bounded, pseudoconvex domain of finite type with smooth boundary. We assume further that the Levi form of partial derivative Omega is diagonalizable. In this article, we give detailed discussion of recent progress of the (partial derivative) over bar -Neumann problem. Using this result, we obtain solving operator for inhomogeneous Cauchy-Riemann equation (partial derivative) over bar = f in Omega. Here f = Sigma(n+1)(j=1) f(j)(w) over bar is a given (0, 1)-form. Then we discuss the "possible" optimal estimates of the solution.
引用
收藏
页码:77 / 106
页数:30
相关论文
共 50 条