Sound field simulation of ultrasonic processing to fabricate carbon nanotubes reinforced AZ91D composites

被引:4
|
作者
Zhao Fu-Ze [1 ]
Zhu Shao-Zhen [1 ,2 ]
Feng Xiao-Hui [1 ]
Yang Yuan-Sheng [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Coll Mat & Met, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
ultrasonic processing; sound field; cavitation; numerical simulation; MAGNESIUM MATRIX COMPOSITE; 20 KHZ SONOREACTOR; NUMERICAL-SIMULATION; HELMHOLTZ-EQUATION; ACOUSTIC PRESSURE; SURFACE-TENSION; ALLOY; MICROSTRUCTURE; STRENGTH; METALS;
D O I
10.7498/aps.64.144302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The sound field in the melt processed by 20 kHz ultrasonic to fabricate CNT-AZ91D is investigated by numerical simulation. Firstly, the distribution of sound pressure in the AZ91D melt is calculated by the finite element method after the model of the sound filed of the ultrasonic processing has been built. The simulation results show that a radial sound field forms under the ultrasonic probe, which means that the sound pressure decreases with increasing distance from the sound source. After the sound field is revealed, we study the ultrasonic cavitation in the AZ91D melt with a single-bubbly-change model and examine the bubble change rule under different sound pressures by solving the Rayleigh-Plesset equation. The relationship between sound pressure amplitude and the ultrasonic cavitation in the melt is also discovered. The higher the sound pressure amplitude, the smaller the threshold radius for the bubble collapse is, and thus the ultrasonic cavitation in AZ91 melt happens more easily. Secondly, the sound fields of the melt with different immersed depths of the ultrasonic probe are calculated. The results show the optimal immersed depth is about 30 mm for the same crucible size used in the present study. Furthermore, the corresponding optimal immersed depth can be calculated for different crucible sizes or different melts by the present numerical method, which is important for the practical ultrasonic processing. After analyzing the calculated results for sound field and the cavitation rule of in the AZ91D synthetically, we find that the volume of the effective cavitation zone rapidly increases with the smaller ultrasonic power and then rises almost linearly with the ultrasonic power larger than 500 W. Finally, to verify the simulation method of the sound field, the contrast study between the simulation and experiment of ultrasonic processing using glycerol-water solution is performed. The simulation result of the sound field in glycerol-water solution is similar to that in AZ91D melt. The highest sound pressure occurs near the end face of ultrasonic probe, while the experimental observation shows that the strongest cavitation also happens near the end face of ultrasonic probe, which indicates that the highest sound pressure occurs in the zone.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution
    Babuska, I
    Ihlenburg, F
    Paik, ET
    Sauter, SA
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) : 325 - 359
  • [2] Correlation between surface tension, density, and sound velocity of liquid metals
    Blairs, Sidney
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 302 (01) : 312 - 314
  • [3] Carbon nanotube/magnesium composites
    Carreño-Morelli, E
    Yang, J
    Couteau, E
    Hernadi, K
    Seo, JW
    Bonjour, C
    Forró, L
    Schaller, R
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2004, 201 (08): : R53 - R55
  • [4] Study of acoustic bubble cluster dynamics using a lattice Boltzmann model
    Daemi, Mahdi
    Taeibi-Rahni, Mohammad
    Massah, Hamidreza
    [J]. CHINESE PHYSICS B, 2015, 24 (02)
  • [5] Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes
    Demczyk, BG
    Wang, YM
    Cumings, J
    Hetman, M
    Han, W
    Zettl, A
    Ritchie, RO
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2): : 173 - 178
  • [6] Du GH., 2012, FUNDAMENTALS ACOUSTI, P223
  • [7] Glycerine Producers Association, 1963, PHYS PROP GLYC ITS S
  • [8] Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles
    Hilgenfeldt, S
    Brenner, MP
    Grossmann, S
    Lohse, D
    [J]. JOURNAL OF FLUID MECHANICS, 1998, 365 : 171 - 204
  • [9] FINITE-ELEMENT SOLUTION OF THE HELMHOLTZ-EQUATION WITH HIGH WAVE-NUMBER .1. THE H-VERSION OF THE FEM
    IHLENBURG, F
    BABUSKA, I
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (09) : 9 - 37
  • [10] KEENE BJ, 1993, INT MATER REV, V38, P157, DOI 10.1179/095066093790326285