The productively Lindelof property in the remainders of topological spaces

被引:0
|
作者
Tokgoz, Secil [1 ]
机构
[1] Hacettepe Univ, Dept Math, Ankara, Turkey
关键词
Remainder; compactification; productively Lindelof; of countable type; topological group; Cech complete; Ohio complete; continuum hypothesis; COMBINATORICS; HUREWICZ; MENGER;
D O I
10.3906/mat-1704-104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological space X is called productively Lindelof if X x Y is Lindelof for every Lindelof space Y. We study with remainders and investigate topological spaces with productively Lindelof remainders.
引用
收藏
页码:1738 / 1746
页数:9
相关论文
共 50 条
  • [1] Productively Lindelof spaces and the covering property of Hurewicz
    Repovs, Dusan
    Zdomskyy, Lyubomyr
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2014, 169 : 16 - 20
  • [2] On productively Lindelof spaces
    Tall, Franklin D.
    Tsaban, Boaz
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (11) : 1239 - 1248
  • [3] Productively Lindelof and indestructibly Lindelof spaces
    Duanmu, Haosui
    Tall, Franklin D.
    Zdomskyy, Lyubomyr
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2443 - 2453
  • [4] The weight and Lindelof property in spaces and topological groups
    Tkachenko, M. G.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 465 - 475
  • [5] PRODUCTIVELY LINDELOF SPACES OF COUNTABLE TIGHTNESS
    Medini, Andrea
    Zdomskyy, Lyubomyr
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (04): : 1263 - 1272
  • [6] Remainders of metrizable spaces and a generalization of Lindelof Σ-spaces
    Arhangel'skii, A. V.
    [J]. FUNDAMENTA MATHEMATICAE, 2011, 215 (01) : 87 - 100
  • [7] INTERNAL CHARACTERIZATIONS OF PRODUCTIVELY LINDELOF SPACES
    Aurichi, Leandro F.
    Zdomskyy, Lyubomyr
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3615 - 3626
  • [8] Indestructibly productively Lindelof and Menger function spaces
    Osipov, Alexander V.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 281
  • [9] NON-PRODUCTIVELY LINDELOF SPACES AND SMALL CARDINALS
    Alas, Ofelia T.
    Aurichi, Leandro F.
    Junqueira, Lucia R.
    Tall, Franklin D.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (04): : 1373 - 1381
  • [10] The Lindelof property in Banach spaces
    Cascales, B
    Namioka, I
    Orihuela, J
    [J]. STUDIA MATHEMATICA, 2003, 154 (02) : 165 - 192