Anisotropic exciton transport in transition-metal dichalcogenides

被引:8
|
作者
Ghazaryan, Areg [1 ]
Hafezi, Mohammad [2 ,3 ,4 ,5 ,6 ]
Ghaemi, Pouyan [1 ,7 ]
机构
[1] CUNY, City Coll, Dept Phys, New York, NY 10031 USA
[2] NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA
[5] Univ Maryland, IREAP, College Pk, MD 20742 USA
[6] Dept Phys, College Pk, MD 20742 USA
[7] CUNY, Dept Phys, Grad Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATION; ELECTRONIC-PROPERTIES; POLARITON DISPERSION; EXCHANGE INTERACTION; VALLEY POLARIZATION; MONOLAYERS; DYNAMICS; MOS2;
D O I
10.1103/PhysRevB.97.245411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In monolayer transitional metal dichalcogenides, the two excitonic states which are eigenstates of Coulomb interaction are coherent superposition of electron and holes in the two valleys. The exciton band which couples to the transverse electric mode of light has parabolic dispersion for the center-of-mass momentum, whereas the one which couples to the transverse magnetic mode has both parabolic and linear components. In this paper we show that the signatures of this band structure of excitons can be observed in exciton diffusion experiments. In particular, it is demonstrated that by pumping the system with linearly polarized light the exciton transport is anisotropic compared to circularly polarized pump and that such anisotropy is absent for the cases of two linearly or two quadratically dispersing bands. We show that the results persist for the moderate level of disorder present in realistic systems. Finally, we demonstrate that similar effects can be obtained for positively detuned exciton polaritons, in less stringent experimental requirements compared to the bare exciton case.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Exciton ionization in multilayer transition-metal dichalcogenides
    Pedersen, Thomas Garm
    Latini, Simone
    Thygesen, Kristian S.
    Mera, Hector
    Nikolic, Branislav K.
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [2] Exciton valley depolarization in monolayer transition-metal dichalcogenides
    Yang, Min
    Robert, Cedric
    Lu, Zhengguang
    Dinh Van Tuan
    Smirnov, Dmitry
    Marie, Xavier
    Dery, Hanan
    [J]. PHYSICAL REVIEW B, 2020, 101 (11)
  • [3] Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides
    Hu, Fengrui
    Fei, Zhe
    [J]. ADVANCED OPTICAL MATERIALS, 2020, 8 (05)
  • [4] Using dark states for exciton storage in transition-metal dichalcogenides
    Tseng, Frank
    Simsek, Ergun
    Gunlycke, Daniel
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (03)
  • [5] Exciton Stark shift and electroabsorption in monolayer transition-metal dichalcogenides
    Pedersen, Thomas Garm
    [J]. PHYSICAL REVIEW B, 2016, 94 (12)
  • [6] TRANSITION-METAL DICHALCOGENIDES
    不详
    [J]. CHEMIE IN UNSERER ZEIT, 1978, 12 (06) : 203 - 203
  • [7] Quantum-electrodynamical approach to the exciton spectrum in transition-metal dichalcogenides
    Marino, E. C.
    Nascimento, Leandro O.
    Alves, Van Sergio
    Menezes, N.
    Morais Smith, C.
    [J]. 2D MATERIALS, 2018, 5 (04):
  • [8] Transport Theory of Monolayer Transition-Metal Dichalcogenides through Symmetry
    Song, Yang
    Dery, Hanan
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [9] MAGNETOPLASMAS IN TRANSITION-METAL DICHALCOGENIDES
    KOBAYASHI, M
    [J]. PHYSICAL REVIEW B, 1983, 27 (06): : 3864 - 3866
  • [10] Exciton polaritons in transition-metal dichalcogenides and their direct excitation via energy transfer
    Gartstein, Yuri N.
    Li, Xiao
    Zhang, Chuanwei
    [J]. PHYSICAL REVIEW B, 2015, 92 (07)