Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

被引:0
|
作者
Orozco-Monteagudo, Maykel [1 ]
Taboada-Crispi, Alberto [1 ]
Gutierrez-Hernandez, Liliana [1 ]
机构
[1] Univ Cent Las Villas, Ctr Studies Elect & Informat Technol, Santa Clara 54830, Villa Clara, Cuba
关键词
Neural networks; genetic algorithms; crossover probability selection; mutation probability selection; replacement rate selection;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.
引用
收藏
页码:3 / 6
页数:4
相关论文
共 50 条
  • [1] Training of multilayer perceptron neural networks by using cellular genetic algorithms
    Orozco-Monteagudo, M.
    Taboada-Crispi, A.
    Del Toro-Almenares, A.
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 389 - 398
  • [2] Feature Selection and Training Multilayer Perceptron Neural Networks Using Grasshopper Optimization Algorithm for Design Optimal Classifier of Big Data Sonar
    Kosarirad, Houman
    Nejati, Mobin Ghasempour
    Saffari, Abbas
    Khishe, Mohammad
    Mohammadi, Mokhtar
    [J]. JOURNAL OF SENSORS, 2022, 2022
  • [3] Determining the optimal percent of negative examples used in training the multilayer perceptron neural networks
    Cernazanu-Glavan, Cosmin
    Holban, Stefan
    [J]. NN'09: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS (NN'09), 2009, : 114 - 119
  • [4] Multilayer perceptron training using an evolutionary algorithm
    El Hamdi, Ridha
    Njah, Mohamed
    Chtourou, Mohamed
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2008, 5 (04) : 305 - 312
  • [5] Parameter Identification of a Multilayer Perceptron Neural Network using an Optimized Salp Swarm Algorithm
    Al-Laham, Mohamad
    Abdullah, Salwani
    Al-Ma'aitah, Mohammad Atwah
    Al-Betar, Mohammed Azmi
    Kassaymeh, Sofian
    Azzazi, Ahmad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1221 - 1232
  • [6] Training Multilayer Perceptron By Using Optimal Input Normalization
    Cai, Xun
    Tyagi, Kanishka
    Manry, Michael T.
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2771 - 2778
  • [7] LIMITATIONS OF MULTILAYER PERCEPTRON NETWORKS - STEPS TOWARDS GENETIC NEURAL NETWORKS
    MUHLENBEIN, H
    [J]. PARALLEL COMPUTING, 1990, 14 (03) : 249 - 260
  • [8] Osteoporosis Assessment Using Multilayer Perceptron Neural Networks
    Harrar, Khaled
    Hamami, Latifa
    Akkoul, Sonia
    Lespessailles, Eric
    Jennane, Rachid
    [J]. 2012 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS, 2012, : 217 - 221
  • [9] Classification of fuels using multilayer perceptron neural networks
    Ozaki, Sergio T. R.
    Wiziack, Nadja K. L.
    Paterno, Leonardo G.
    Fonseca, Fernando J.
    [J]. OLFACTION AND ELECTRONIC NOSE, PROCEEDINGS, 2009, 1137 : 525 - 526
  • [10] Selection of optimal parameter of speed of training of neural network perceptron type
    Kulchin, YN
    Denisova, EV
    Denisov, IV
    Efimov, MB
    [J]. FUNDAMENTAL PROBLEMS OF OPTOELECTRONICS AND MICROELECTRONICS, 2003, 5129 : 162 - 167