Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic

被引:0
|
作者
Zhang, Lei [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
关键词
effectivity problems; pluricanonical systems; positive characteristic; Frobenius stable sections; MINIMAL MODEL PROGRAM; EXPLICIT BIRATIONAL GEOMETRY; PROJECTIVE VARIETIES; SURFACES; 3-FOLDS; THEOREM; MAPS;
D O I
10.2140/ant.2022.16.2339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates effectivity problems of pluricanonical systems on varieties of general type in positive characteristic. In practice, we will consider a sublinear system vertical bar S--(0)(X, K-X + nK(X))vertical bar subset of vertical bar H-0(X, K-X + nK(X))vertical bar generated by certain Frobenius stable sections, and prove that for a minimal terminal threefold X of general type with either q(X) > 0 or Gorenstein singularities, if n >= 28 then vertical bar S--(0)(X, K-X+nK(X))vertical bar not equal(sic); and if n >= 42 then the linear system vertical bar S--(0)(X, K-X+ nK(X))vertical bar defines a birational map.
引用
收藏
页码:2339 / 2384
页数:47
相关论文
共 50 条