Fast high-quality non-blind deconvolution using sparse adaptive priors

被引:30
|
作者
Fortunato, Horacio E. [1 ]
Oliveira, Manuel M. [2 ]
机构
[1] Laureate Int Univ, Uniritter, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
来源
VISUAL COMPUTER | 2014年 / 30卷 / 6-8期
关键词
Non-blind deconvolution; Adaptive priors; Deblurring; Computational photography; IMAGE; CAMERA; DEPTH;
D O I
10.1007/s00371-014-0966-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an efficient approach for high-quality non-blind deconvolution based on the use of sparse adaptive priors. Its regularization term enforces preservation of strong edges while removing noise. We model the image-prior deconvolution problem as a linear system, which is solved in the frequency domain. This clean formulation lends to a simple and efficient implementation. We demonstrate its effectiveness by performing an extensive comparison with existing non-blind deconvolution methods, and by using it to deblur photographs degraded by camera shake. Our experiments show that our solution is faster and its results tend to have higher peak signal-to-noise ratio than the state-of-the-art techniques. Thus, it provides an attractive alternative to perform high-quality non-blind deconvolution of large images, as well as to be used as the final step of blind-deconvolution algorithms.
引用
收藏
页码:661 / 671
页数:11
相关论文
共 50 条
  • [1] Fast high-quality non-blind deconvolution using sparse adaptive priors
    Horacio E. Fortunato
    Manuel M. Oliveira
    [J]. The Visual Computer, 2014, 30 : 661 - 671
  • [2] High-quality non-blind image deconvolution with adaptive regularization
    Lee, Jong-Ho
    Ho, Yo-Sung
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2011, 22 (07) : 653 - 663
  • [3] Fast Non-blind Image Deblurring with Sparse Priors
    Das, Rajshekhar
    Bajpai, Anurag
    Venkatesan, Shankar M.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2016, VOL 1, 2017, 459 : 629 - 641
  • [4] HIGH-QUALITY NON-BLIND MOTION DEBLURRING
    Wang, Chao
    Sun, LiFeng
    Chen, ZhuoYuan
    Yang, ShiQiang
    Zhang, JianWei
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 153 - +
  • [5] A novel framework method for non-blind deconvolution using subspace images priors
    Zhuang, Peixian
    Fu, Xueyang
    Huang, Yue
    Zeng, Delu
    Ding, Xinghao
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 46 : 17 - 28
  • [6] Non-blind Image Deconvolution with Adaptive Regularization
    Lee, Jong-Ho
    Ho, Yo-Sung
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 719 - 730
  • [7] High quality non-blind image deconvolution using the Fields of Experts prior
    Chen, Jinwei
    Dong, Wende
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    [J]. OPTIK, 2013, 124 (18): : 3601 - 3606
  • [8] Blind deconvolution with sparse priors on the deconvolution filters
    Park, HM
    Lee, JH
    Oh, SH
    Lee, SY
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 658 - 665
  • [9] Good Image Priors for Non-blind Deconvolution: Generic vs. Specific
    Sun, Libin
    Cho, Sunghyun
    Wang, Jue
    Hays, James
    [J]. COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 231 - 246
  • [10] Multi-frame blind deconvolution using sparse priors
    Dong, Wende
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (09) : 2276 - 2288