Isothermal desorption rates were measured at 15, 30, and 60 degrees C for trichloroethylene (TCE) on a silica gel, an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all at 100% relative humidity. Temperature-stepped desorption (TSD) rates were measured for these solids in columns prepared and equilibrated at 30 degrees C, but heated instantaneously to 60 degrees C after similar to 1000 min of slow desorption. Fast and slow elution rates are observed for all solids. Modeling results for the fast eluting fraction of TCE show that fast desorption is controlled by diffusion through aqueous filled mesopores. Rates predicted from diffusion and surface-barrier models are compared to slow isothermal and TSD rates. Diffusion model fits are superior to surface-barrier model fits in all cases. Slow diffusion coefficients and a high activation energy calculated from silica gel data (similar to 34 kJ/mol) indicate that slow desorption is controlled by activated diffusion in micropores. Initial amounts of slow desorbing TCE do not affect these rates and are found to obey Polanyi's equation. The mass adsorbed in non-Freundlich isotherm regions, where micropores are hypothesized to control adsorption, is 10 times greater than the mass adsorbed at the onset of slow desorption, suggesting that these pores are undulating in nature. TSD column results are consistent with a mechanism where slow diffusion rates are controlled by sorptive forces at hydrophobic micropore constrictions.