Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

被引:7
|
作者
Wang, Shunsen [1 ]
Bai, Kunlun [1 ]
Xie, Yonghui [1 ]
Di, Juan [1 ]
Cheng, Shangfang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
ORGANIC RANKINE-CYCLE; WORKING FLUIDS; PERFORMANCE;
D O I
10.1155/2014/689398
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE) by integrating the transcritical carbon dioxide (CO2) refrigeration cycle with the supercritical CO2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (W-net). The results indicate that replacing a single-turbine scheme with a double-turbine scheme can significantly enhance the net power output (W-net) and lower the inlet pressure of the power turbine (P-4). With the same exhaust parameters of ICE, the maximum W-net of the double-turbines scheme is 40%-50% higher than that of the single-turbine scheme. Replacing a single-stage compression scheme with a double-stage compression scheme can also lower the value of P-4, while it could not always significantly enhance the value of W-net. Except for the power consumption of air conditioning, the net power output of this thermodynamic system can reach up to 13%-35% of the engine power when it is used to recover the exhaust heat of internal combustion engines.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Thermodynamic Analysis of Supercritical Carbon Dioxide Cycle for Internal Combustion Engine Waste Heat Recovery
    Yu, Wan
    Gong, Qichao
    Gao, Dan
    Wang, Gang
    Su, Huashan
    Li, Xiang
    PROCESSES, 2020, 8 (02)
  • [2] A combined thermodynamic cycle used for waste heat recovery of internal combustion engine
    He, Maogang
    Zhang, Xinxin
    Zeng, Ke
    Gao, Ke
    ENERGY, 2011, 36 (12) : 6821 - 6829
  • [3] Thermodynamic analysis on the combination of supercritical carbon dioxide power cycle and transcritical carbon dioxide refrigeration cycle for the waste heat recovery of shipboard
    Yu, Aofang
    Su, Wen
    Lin, Xinxing
    Zhou, Naijun
    Zhao, Li
    ENERGY CONVERSION AND MANAGEMENT, 2020, 221
  • [4] Thermodynamic analysis of Kalina Cycle for Internal Combustion Engine Waste Heat Recovery
    Chen, Fu-Xiang
    Gao, Hong
    Gao, Hong (gaohong@cqu.edu.cn), 1600, Science Press (41): : 271 - 276
  • [5] A transcritical carbon dioxide power cycle enhanced by ejector refrigeration for engine waste heat recovery: Comprehensive analysis and optimization
    Wu, Chuang
    Wan, Yuke
    Xu, Xiaoxiao
    Liu, Chao
    ENERGY CONVERSION AND MANAGEMENT, 2023, 292
  • [6] Energy Analysis for Hydrogen Generation with the Waste Heat of Internal Combustion Engine
    Lu, Liang-Chun
    Lu, Jau-Huai
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 1492 - 1498
  • [7] Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery
    Pan, Mingzhang
    Bian, Xingyan
    Zhu, Yan
    Liang, Youcai
    Lu, Fulu
    Xiao, Gang
    ENERGY CONVERSION AND MANAGEMENT, 2020, 224
  • [8] Proposal and assessment of a combined cooling and power system based on the regenerative supercritical carbon dioxide Brayton cycle integrated with an absorption refrigeration cycle for engine waste heat recovery
    Wu, Chuang
    Xu, Xiaoxiao
    Li, Qibin
    Li, Jun
    Wang, Shunsen
    Liu, Chao
    ENERGY CONVERSION AND MANAGEMENT, 2020, 207 (207)
  • [9] Thermodynamic analysis of dual-loop organic Rankine cycle using zeotropic mixtures for internal combustion engine waste heat recovery
    Ge, Zhong
    Li, Jian
    Liu, Qiang
    Duan, Yuanyuan
    Yang, Zhen
    ENERGY CONVERSION AND MANAGEMENT, 2018, 166 : 201 - 214
  • [10] Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide
    Zhang, X. R.
    Yamaguchi, H.
    Fujima, K.
    Enomoto, M.
    Sawada, N.
    ENERGY, 2007, 32 (04) : 591 - 599