SENSITIVITY ANALYSIS OF GREY LINEAR PROGRAMMING FOR OPTIMISATION PROBLEMS

被引:0
|
作者
Darvishi, Davood [1 ]
Pourofoghi, Farid [1 ]
Forrest, Jeffrey Yi-Lin [2 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-4697, Tehran, Iran
[2] Slippery Rock Univ, Dept Accounting Econ Finance, Slippery Rock, PA 16057 USA
关键词
sensitivity analysis; uncertainty; interval grey number; grey linear programming; DIET;
D O I
10.37190/ord210402
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Sensitivity analysis of parameters is usually more important than the optimal solution when it comes to linear programming. Nevertheless, in the analysis of traditional sensitivities for a coefficient, a range of changes is found to maintain the optimal solution. These changes can be functional constraints in the coefficients, such as good values or technical coefficients, of the objective function. When real-world problems are highly inaccurate due to limited data and limited information, the method of grey systems is used to perform the needed optimisation. Several algorithms for solving grey linear programming have been developed to entertain involved inaccuracies in the model parameters; these methods are complex and require much computational time. In this paper, the sensitivity of a series of grey linear programming problems is analysed by using the definitions and operators of grey numbers. Also, uncertainties in parameters are preserved in the solutions obtained from the sensitivity analysis. To evaluate the efficiency and importance of the developed method, an applied numerical example is solved.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 50 条
  • [1] Sensitivity Analysis for Fuzzy Linear Programming Problems
    Kumar, Amit
    Bhatia, Neha
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, RSFDGRC 2011, 2011, 6743 : 103 - 110
  • [2] Formulae for the sensitivity analysis of linear programming problems
    Gauvin, J
    [J]. APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, 2001, : 117 - 120
  • [3] Sensitivity analysis in fuzzy number linear programming problems
    Ebrahimnejad, A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1878 - 1888
  • [4] Duality Results on Grey Linear Programming Problems
    Nasseri, S. H.
    Darvishi, D.
    [J]. JOURNAL OF GREY SYSTEM, 2018, 30 (03): : 127 - 142
  • [5] Solution to a class of grey linear programming problems
    Wang, Wenping
    Deng, Julong
    [J]. Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 1995, 23 (Sup):
  • [6] Sensitivity analysis for 0-1 linear programming problems
    Thiongane, B
    Nagih, A
    Plateau, G
    [J]. RAIRO-OPERATIONS RESEARCH, 2003, 37 (04) : 291 - 309
  • [7] SENSITIVITY ANALYSIS OF LINEAR PROGRAMMING TRANSPORTATION PROBLEMS WITH AN ALGOL PROGRAM
    MULLERME.H
    [J]. ELECTRONISCHE DATENVERARBEITUNG, 1968, 10 (04): : 184 - &
  • [8] Grey linear programming
    Chen, ZJ
    Chen, QL
    Chen, WZ
    Wang, YN
    [J]. KYBERNETES, 2004, 33 (02) : 238 - 246
  • [9] Design sensitivity analysis method for multidisciplinary shape optimisation problems with linear and non-linear responses
    Chiandussi, G.
    Fontana, R.
    Urbinati, F.
    [J]. Engineering Computations (Swansea, Wales), 1998, 15 (2-3): : 391 - 417
  • [10] Design sensitivity analysis method for multidisciplinary shape optimisation problems with linear and non-linear responses
    Chiandussi, G
    Fontana, R
    Urbinati, F
    [J]. ENGINEERING COMPUTATIONS, 1998, 15 (2-3) : 391 - +