Evolutionary learning of fuzzy neural network using a modified genetic algorithm

被引:0
|
作者
Seng, KP [1 ]
Tse, KM [1 ]
机构
[1] Monash Univ Malaysia, Sch Sci & Engn, Sunway 46150, PJ, Malaysia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the tuning of the structure and parameters of a proposed fuzzy neural network (FNN) using a modified genetic algorithm (GA). A FNN with switches introduced to layer 2-3 and 3-4 links is proposed. By doing this, the proposed FNN can learn both the input-output relationships of an application and the network structure using the modified GA. The number of hidden nodes in layer 3 is chosen manually by increasing it from a small number until the learning performance in terms of fitness value is good enough. An application example on sunspot forecasting is given to highlight the merits of the modified GA and the proposed FNN.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 50 条
  • [1] Learning of neural network parameters using a fuzzy genetic algorithm
    Ling, SH
    Lam, HK
    Leung, FHF
    Tam, PKS
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1928 - 1933
  • [2] Evolutionary fuzzy modeling using fuzzy neural networks and genetic algorithm
    Furuhashi, T
    Matsushita, S
    Tsutsui, H
    [J]. PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), 1997, : 623 - 627
  • [3] Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm
    Wang, WY
    Li, YH
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (06): : 966 - 976
  • [4] Application of a modified neural fuzzy network and an improved genetic algorithm to speech recognition
    K. F. Leung
    F. H. F. Leung
    H. K. Lam
    S. H. Ling
    [J]. Neural Computing and Applications, 2007, 16 : 419 - 431
  • [5] Application of a modified neural fuzzy network and an improved genetic algorithm to speech recognition
    Leung, K. F.
    Leung, F. H. F.
    Lam, H. K.
    Ling, S. H.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2007, 16 (4-5): : 419 - 431
  • [6] Fast Learning Neural Network using modified Corners Algorithm
    Kala, Rahul
    Shukla, Anupam
    Tiwari, Ritu
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL I, 2009, : 367 - 373
  • [7] NEURAL FUZZY NETWORK MODEL WITH EVOLUTIONARY LEARNING ALGORITHM FOR MYCOLOGICAL STUDY OF FOODBORNE FUNGI
    Ho, Wen-Hsien
    Tsai, Jinn-Tsong
    Wang, Hue-Yu
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (7A): : 4565 - 4577
  • [8] Neural network optimisation using genetic algorithm: A hierarchical fuzzy method
    Sharma, SK
    Tokhi, MO
    [J]. ALGORITHMS AND ARCHITECTURES FOR REAL-TIME CONTROL 2000, 2000, : 75 - 80
  • [9] Continuous genetic algorithm-based fuzzy neural network for learning fuzzy IF-THEN rules
    Kuo, R. J.
    Hong, S. M.
    Lin, Y.
    Huang, Y. C.
    [J]. NEUROCOMPUTING, 2008, 71 (13-15) : 2893 - 2907
  • [10] Federated Fuzzy Neural Network With Evolutionary Rule Learning
    Zhang, Leijie
    Shi, Ye
    Chang, Yu-Cheng
    Lin, Chin-Teng
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (05) : 1653 - 1664