Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer

被引:149
|
作者
Bourassa, J. Eli [1 ,2 ]
Alexander, Rafael N. [1 ,3 ,4 ]
Vasmer, Michael [5 ,6 ]
Patil, Ashlesha [1 ,7 ]
Tzitrin, Ilan [1 ,2 ]
Matsuura, Takaya [1 ,8 ]
Su, Daiqin [1 ]
Baragiola, Ben Q. [1 ,4 ]
Guha, Saikat [1 ,7 ]
Dauphinais, Guillaume [1 ]
Sabapathy, Krishna K. [1 ]
Menicucci, Nicolas C. [1 ,4 ]
Dhand, Ish [1 ]
机构
[1] Xanadu, Toronto, ON M5G 2C8, Canada
[2] Univ Toronto, Dept Phys, Toronto, ON, Canada
[3] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[4] RMIT Univ, Ctr Quantum Computat & Commun Technol, Sch Sci, Melbourne, Vic 3000, Australia
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ 85719 USA
[8] Univ Tokyo, Grad Sch Engn, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
来源
QUANTUM | 2021年 / 5卷
关键词
ERROR-CORRECTING CODES; ACCURACY THRESHOLD; COMPUTATION; GENERATION; STATES; CLIFFORD; SCHEME; QUBIT;
D O I
10.22331/q-2021-02-04-392
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional resource states comprising both bosonic qubits and squeezed vacuum states. The proposal exploits state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Blueprint for fault-tolerant quantum computation with Rydberg atoms
    Auger, James M.
    Bergamini, Silvia
    Browne, Dan E.
    [J]. PHYSICAL REVIEW A, 2017, 96 (05)
  • [2] Towards a Fault-Tolerant Quantum Computer
    Mirrahimi, Mazyar
    [J]. 2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 1807 - 1807
  • [3] Battling decoherence: The fault-tolerant quantum computer
    Preskill, J
    [J]. PHYSICS TODAY, 1999, 52 (06) : 24 - 30
  • [4] Resource analysis for quantum simulation on a fault-tolerant quantum computer
    Jones, Nathan C.
    McMahon, Peter L.
    Whitfield, James
    Yung, Man-Hong
    Aspuru-Guzik, Alan
    Yamamoto, Yoshihisa
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [5] Implementing a strand of a scalable fault-tolerant quantum computing fabric
    Jerry M. Chow
    Jay M. Gambetta
    Easwar Magesan
    David W. Abraham
    Andrew W. Cross
    B R Johnson
    Nicholas A. Masluk
    Colm A. Ryan
    John A. Smolin
    Srikanth J. Srinivasan
    M Steffen
    [J]. Nature Communications, 5
  • [6] Implementing a strand of a scalable fault-tolerant quantum computing fabric
    Chow, Jerry M.
    Gambetta, Jay M.
    Magesan, Easwar
    Abraham, David W.
    Cross, Andrew W.
    Johnson, B. R.
    Masluk, Nicholas A.
    Ryan, Colm A.
    Smolin, John A.
    Srinivasan, Srikanth J.
    Steffen, M.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [7] Scalable Fault-Tolerant Quantum Technologies with Silicon Color Centers
    Simmons, Stephanie
    [J]. PRX QUANTUM, 2024, 5 (01):
  • [8] Qubit metrology for building a fault-tolerant quantum computer
    Martinis, John M.
    [J]. NPJ QUANTUM INFORMATION, 2015, 1
  • [9] A fault-tolerant one-way quantum computer
    Raussendorf, R.
    Harrington, J.
    Goyal, K.
    [J]. ANNALS OF PHYSICS, 2006, 321 (09) : 2242 - 2270
  • [10] Qubit metrology for building a fault-tolerant quantum computer
    John M Martinis
    [J]. npj Quantum Information, 1