VOLTERRA INTEGRAL EQUATIONS GOVERNED BY HIGHLY OSCILLATORY FUNCTIONS ON TIME SCALES

被引:0
|
作者
Satco, Bianca [1 ]
机构
[1] Stefan Cel Mare Univ Suceava, Fac Elect Engn & Comp Sci, Suceava, Romania
关键词
time scale; Henstock integral; Volterra integral equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an existence result for Volterra integral equations on time scales. Since the theory of time scales unifies the cases of difference and differential problems, our result encompasses both situations and not only these ones. Moreover, we use the Henstock-Delta-integral, therefore the situation where the equation is governed by an oscillatory function is also covered.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [1] On Volterra Integral Equations on Time Scales
    Iguer Luis Domini dos Santos
    [J]. Mediterranean Journal of Mathematics, 2015, 12 : 471 - 480
  • [2] On Volterra Integral Equations on Time Scales
    Domini dos Santos, Iguer Luis
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (02) : 471 - 480
  • [3] Numerical approximation of Volterra integral equations with highly oscillatory kernels
    Khan, Suliman
    [J]. RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [4] Analysis of Perturbed Volterra Integral Equations on Time Scales
    Messina, Eleonora
    Raffoul, Youssef N.
    Vecchio, Antonia
    [J]. MATHEMATICS, 2020, 8 (07)
  • [5] Linear fuzzy Volterra integral equations on time scales
    M. Shahidi
    A. Khastan
    [J]. Computational and Applied Mathematics, 2020, 39
  • [6] Linear fuzzy Volterra integral equations on time scales
    Shahidi, M.
    Khastan, A.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [7] EXISTENCE OF RESOLVENT FOR VOLTERRA INTEGRAL EQUATIONS ON TIME SCALES
    Adivar, Murat
    Raffoul, Youssef N.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) : 139 - 155
  • [8] On fast multipole methods for Volterra integral equations with highly oscillatory kernels
    Zhang, Qingyang
    Xiang, Shuhuang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 535 - 554
  • [9] The generalized quadrature method for a class of highly oscillatory Volterra integral equations
    Zhao, Longbin
    Huang, Chengming
    [J]. NUMERICAL ALGORITHMS, 2023, 92 (03) : 1503 - 1516
  • [10] Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels
    Shuhuang Xiang
    Hermann Brunner
    [J]. BIT Numerical Mathematics, 2013, 53 : 241 - 263