Braid pictures for Artin groups

被引:40
|
作者
Allcock, D [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Braid group; Artin group; orbifold; Garside element;
D O I
10.1090/S0002-9947-02-02944-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We de ne the braid groups of a two-dimensional orbifold and introduce conventions for drawing braid pictures. We use these to realize the Artin groups associated to the spherical Coxeter diagrams A(n), B-n = C-n and D-n and the affine diagrams (A) over tilde (n), (B) over tilde (n), (C) over tilde (n) and (D) over tilde (n) as subgroups of the braid groups of various simple orbifolds. The cases D-n, (B) over tilde (n), (C) over tilde (n) and (D) over tilde (n) are new. In each case the Artin group is a normal subgroup with abelian quotient; in all cases except (A) over tilde (n) the quotient is finite. We also illustrate the value of our braid calculus by giving a picture-proof of the basic properties of the Garside element of an Artin group of type D-n.
引用
收藏
页码:3455 / 3474
页数:20
相关论文
共 50 条
  • [1] Artin braid groups and homotopy groups
    Li, Jingyan
    Wu, Jie
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 99 : 521 - 556
  • [2] On the linearity of Artin braid groups
    Digne, F
    [J]. JOURNAL OF ALGEBRA, 2003, 268 (01) : 39 - 57
  • [3] ARTIN COVERS OF THE BRAID GROUPS
    Amram, Meirav
    Lawrence, Ruth
    Vishne, Uzi
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (07)
  • [4] REPRESENTATIONS OF ARTIN BRAID-GROUPS
    ALI, AB
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (09): : 1045 - 1048
  • [5] A gathering process in Artin braid groups
    Esyp, Evgeinj S.
    Kazachkov, Ilya V.
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (04) : 771 - 795
  • [6] A quotient of the Artin braid groups related to crystallographic groups
    Goncalves, Daciberg Lima
    Guaschi, John
    Ocampo, Oscar
    [J]. JOURNAL OF ALGEBRA, 2017, 474 : 393 - 423
  • [7] On braid groups and right-angled Artin groups
    Francis Connolly
    Margaret Doig
    [J]. Geometriae Dedicata, 2014, 172 : 179 - 190
  • [8] On braid groups and right-angled Artin groups
    Connolly, Francis
    Doig, Margaret
    [J]. GEOMETRIAE DEDICATA, 2014, 172 (01) : 179 - 190
  • [9] Examples of large centralizers in the Artin braid groups
    Ivanov, NV
    [J]. GEOMETRIAE DEDICATA, 2004, 105 (01) : 231 - 235
  • [10] Examples of Large Centralizers in the Artin Braid Groups
    Nikolai V. Ivanov
    [J]. Geometriae Dedicata, 2004, 105 : 231 - 235