A Class of Schur Multipliers of Matrices with Operator Entries

被引:3
|
作者
Blasco, Oscar [1 ]
Garcia-Bayona, Ismael [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
关键词
Schur product; Toeplitz matrix; Schur multiplier; vector-valued measure; vector-valued function;
D O I
10.1007/s00009-019-1364-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will consider matrices with entries in the space of operators B(H), where H is a separable Hilbert space, and consider the class of (left or right) Schur multipliers that can be approached in the multiplier norm by matrices with a finite number of diagonals. We will concentrate on the case of Toeplitz matrices and of upper triangular matrices to get some connections with spaces of vector-valued functions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Class of Schur Multipliers of Matrices with Operator Entries
    Oscar Blasco
    Ismael García-Bayona
    [J]. Mediterranean Journal of Mathematics, 2019, 16
  • [2] On a Schur-Type Product for Matrices with Operator Entries
    Garcia-Bayona, Ismael
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) : 1775 - 1789
  • [3] On a Schur-Type Product for Matrices with Operator Entries
    Ismael García-Bayona
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 1775 - 1789
  • [4] Pick Matrices for Schur Multipliers
    Dym, Harry
    Volok, Dan
    [J]. CHARACTERISTIC FUNCTIONS, SCATTERING FUNCTIONS AND TRANSFER FUNCTIONS: THE MOSHE LIVSIC MEMORIAL VOLUME, 2010, 197 : 133 - +
  • [5] On matrices with operator entries
    Cvetkovic, Ljiljana
    Takaci, Djurdjica
    [J]. NUMERICAL ALGORITHMS, 2006, 42 (3-4) : 335 - 344
  • [6] On matrices with operator entries
    Ljiljana Cvetković
    Djurdjica Takači
    [J]. Numerical Algorithms, 2006, 42 : 335 - 344
  • [7] Schur Product with Operator-valued Entries
    Blasco, Oscar
    Garcia-Bayona, Ismael
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1175 - 1199
  • [8] A Class of Schur Multipliers on Some Quasi-Banach Spaces of Infinite Matrices
    Popa, Nicolae
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [9] Operator System Structures and Extensions of Schur Multipliers
    Lin, Ying-Fen
    Todorov, Ivan G.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (17) : 12809 - 12846
  • [10] Self-adjoint block operator matrices with non-separated diagonal entries and their Schur complements
    Langer, H
    Markus, A
    Matsaev, V
    Tretter, C
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 427 - 451