Nanocrystalline fee metals: bridging experiments with simulations

被引:0
|
作者
Van Swygenhoven, H [1 ]
Derlet, PM [1 ]
Froseth, AG [1 ]
Van Petegem, S [1 ]
Budrovic, Z [1 ]
Hasnaoui, A [1 ]
机构
[1] PSI, NUM Comp Modelling & Expt, ASQ, Villigen, Switzerland
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomistic simulations have provided unprecedented insight into the structural and mechanical properties of nanocrystalline materials, highlighting the role of the non-equilibrium grain boundary structure in both inter- and intra-grains deformation processes. One of the most important results is the capability of the nanosized grain boundary to act as a source and sink for dislocations. However the extrapolation of this knowledge to the experimental regime requires a clear understanding of the temporal and spatial scales of the modelling technique and a detailed structural characterisation of the simulated samples. In this contribution some of the synergies that can be developed between atomistic simulations and experiments for this research field are briefly discussed by means of some typical examples.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 50 条
  • [1] Nanocrystalline fcc metals: bridging experiments with simulations
    Van Swygenhoven, H
    Derlet, PM
    Froseth, AG
    Van Petegem, S
    Budrovic, Z
    Hasnaoui, A
    NANOSCALE MATERIALS AND MODELING-RELATIONS AMONG PROCESSING, MICROSTRUCTURE AND MECHANICAL PROPERTIES, 2004, 821 : 285 - 294
  • [2] Are deformation mechanisms different in nanocrystalline metals? Experiments and atomistic computer simulations.
    Van Swygenhoven, H
    Budrovich, Z
    Derlet, PM
    Hasnaoui, A
    PROCESSING AND PROPERTIES OF STRUCTURAL NANOMATERIALS, 2003, : 3 - 10
  • [3] Bridging simulations and experiments in microstructure evolution
    Demirel, MC
    Kuprat, AP
    George, DC
    Rollett, AD
    PHYSICAL REVIEW LETTERS, 2003, 90 (01) : 1 - 016106
  • [4] A Quantized Crystal Plasticity Finite Element Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Experiments
    Li, Lin
    Lee, Myoung-Gyu
    Anderson, Peter M.
    NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009), 2010, 1252 : 841 - 841
  • [5] Sintering of nanocrystalline materials: Experiments and computer simulations
    Averback, RS
    Zhu, H
    Tao, R
    Hofler, H
    SYNTHESIS AND PROCESSING OF NANOCRYSTALLINE POWDER, 1996, : 203 - 216
  • [6] Bridging Experiments and Simulations in Oblique Angle Polymerization
    Cetinkaya, Murat
    Demirel, Melik C.
    CHEMICAL VAPOR DEPOSITION, 2009, 15 (4-6) : 101 - 105
  • [7] Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations
    Brandstetter, S.
    Derlet, P. M.
    Van Petegem, S.
    Van Swygenhoven, H.
    ACTA MATERIALIA, 2008, 56 (02) : 165 - 176
  • [8] Strain rates in molecular dynamics simulations of nanocrystalline metals
    Brandl, Christian
    Derlet, Peter M.
    Van Swygenhoven, Helena
    PHILOSOPHICAL MAGAZINE, 2009, 89 (34-36) : 3465 - 3475
  • [9] The deformation physics of nanocrystalline metals: Experiments, analysis, and computations
    Marc A. Meyers
    Anuj Mishra
    David J. Benson
    JOM, 2006, 58 : 41 - 48
  • [10] The deformation physics of nanocrystalline metals: Experiments, analysis, and computations
    Meyers, MA
    Mishra, A
    Benson, DJ
    JOM, 2006, 58 (04) : 41 - 48