We present a self-contained combinatorial approach to Fujita's conjectures in the toric case. Our main new result is a generalization of Fujita's very ampleness conjecture for toric varieties with arbitrary singularities. In an appendix, we use similar methods to give a new proof of an analogous toric generalization of Fujita's freeness conjecture due to Fujino.
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Gonzalez, Jose Luis
Zhu, Zhixian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Adv Innovat Ctr Imaging Theory & Technol, Beijing 100048, Peoples R China
Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100048, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
机构:
SISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
IGAP Inst Geometry & Phys, Trieste, Italy
INFN Ist Nazl Fis Nucl, Sez Trieste, Arnold Regge Ctr Algebra, Turin, ItalySISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
Bruzzo, Ugo
Grassi, Antonella
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USASISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy