Heat kernel estimates and the Green functions on multiplier Hermitian manifolds

被引:7
|
作者
Mabuchi, T [1 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.2748/tmj/1113247566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a standard technique of Li and Yau, we study heat kernel estimates for a special type of compact conformally Kahler manifold, called a multiplier Hermitian manifold of type sigma, which we derive from a Hamiltonian holomorphic vector field on the manifold. In particular, we obtain a lower bound estimate for the Green function averaged by the associated group action. For a fixed or, such an estimate is known to play a crucial role in the proof of the uniqueness, modulo a group action, of Einstein multiplier Hermitian structures on a given Fano manifold.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 50 条
  • [1] Heat kernel estimates with application to compactness of manifolds
    Gong, FZ
    Wang, FY
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 171 - 180
  • [2] Multiplier Hermitian structures on Kahler manifolds
    Mabuchi, T
    NAGOYA MATHEMATICAL JOURNAL, 2003, 170 : 73 - 115
  • [3] Heat kernel estimates on connected sums of parabolic manifolds
    Grigor'yan, Alexander
    Ishiwata, Satoshi
    Saloff-Coste, Laurent
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 113 : 155 - 194
  • [4] Harnack estimates for conjugate heat kernel on evolving manifolds
    Cao, Xiaodong
    Guo, Hongxin
    Hung Tran
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 201 - 214
  • [5] Harnack estimates for conjugate heat kernel on evolving manifolds
    Xiaodong Cao
    Hongxin Guo
    Hung Tran
    Mathematische Zeitschrift, 2015, 281 : 201 - 214
  • [6] Heat Kernel Estimates and the Essential Spectrum on Weighted Manifolds
    Nelia Charalambous
    Zhiqin Lu
    The Journal of Geometric Analysis, 2015, 25 : 536 - 563
  • [7] Heat Kernel Estimates and the Essential Spectrum on Weighted Manifolds
    Charalambous, Nelia
    Lu, Zhiqin
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (01) : 536 - 563
  • [8] Heat Kernels Estimates for Hermitian Line Bundles on Manifolds of Bounded Geometry
    Kordyukov, Yuri A.
    MATHEMATICS, 2021, 9 (23)
  • [9] SPECTRAL MULTIPLIER THEOREM AND SUB-GAUSSIAN HEAT KERNEL ESTIMATES
    Chen, Peng
    Lin, Xixi
    COLLOQUIUM MATHEMATICUM, 2022, 170 (02) : 193 - 210
  • [10] Estimates for a function on almost Hermitian manifolds
    Kawamura, Masaya
    COMPLEX MANIFOLDS, 2021, 8 (01): : 267 - 273