A NOTE ON ALMOST CONTACT RIEMANNIAN 3-MANIFOLDS II

被引:11
|
作者
Inoguchi, Jun-ichi [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
cosymplectic; 3-manifolds; Kenmotsu; Sasakian; eta-parallelism; strong eta-parallelism; KENMOTSU MANIFOLDS; SYMMETRY;
D O I
10.4134/BKMS.b150772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify Kenmotsu 3-manifolds and cosymplectic 3-manifolds with eta-parallel Ricci operator.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 50 条
  • [1] A note on Riemannian flows on 3-manifolds
    Fawaz, A
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 137 - 147
  • [2] Almost contact curves in normal almost contact 3-manifolds
    Jun-ichi Inoguchi
    Ji-Eun Lee
    Journal of Geometry, 2012, 103 (3) : 457 - 474
  • [3] Almost contact curves in normal almost contact 3-manifolds
    Inoguchi, Jun-ichi
    Lee, Ji-Eun
    JOURNAL OF GEOMETRY, 2012, 103 (03) : 457 - 474
  • [4] ALMOST CONTACT 3-MANIFOLDS AND RICCI SOLITONS
    Cho, Jong Taek
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (01)
  • [5] CURVATURE OF CONTACT RIEMANNIAN 3-MANIFOLDS WITH CRITICAL METRICS
    GOLDBERG, SI
    PERRONE, D
    TOTH, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1410 : 212 - 222
  • [6] CURVATURE OF CONTACT RIEMANNIAN 3-MANIFOLDS WITH CRITICAL METRICS
    GOLDBERG, SI
    PERRONE, D
    TOTH, G
    DIFFERENTIAL GEOMETRY, 1989, 1410 : 212 - 222
  • [7] CONFORMALLY FLAT NORMAL ALMOST CONTACT 3-MANIFOLDS
    Cho, Jong Taek
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (01): : 59 - 69
  • [8] On slant curves in normal almost contact metric 3-manifolds
    Inoguchi J.-I.
    Lee J.-E.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (2): : 603 - 620
  • [9] CURVATURE AND METRIC IN RIEMANNIAN 3-MANIFOLDS
    NASU, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1975, 27 (02) : 194 - 206
  • [10] Riemannian submersions from almost contact metric manifolds
    Ianus, S.
    Ionescu, A. M.
    Mocanu, R.
    Vilcu, G. E.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2011, 81 (01): : 101 - 114