Uncertainty principles of Ingham and Paley-Wiener on semisimple Lie groups

被引:10
|
作者
Bhowmik, Mithun [1 ]
Sen, Suparna [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 203 BT Rd, Kolkata 700108, India
关键词
RIEMANNIAN SYMMETRIC-SPACES; SCHRODINGER-EQUATIONS; UNIQUENESS PROPERTIES;
D O I
10.1007/s11856-018-1662-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical results due to Ingham and Paley-Wiener characterize the existence of nonzero functions supported on certain subsets of the real line in terms of the pointwise decay of the Fourier transforms. Viewing these results as uncertainty principles for Fourier transforms, we prove certain analogues of these results on connected, noncompact, semisimple Lie groups with finite center. We also use these results to show a unique continuation property of solutions to the initial value problem for time-dependent Schrodinger equations on Riemmanian symmetric spaces of noncompact type.
引用
收藏
页码:193 / 221
页数:29
相关论文
共 50 条