On the category of weak bialgebras

被引:10
|
作者
Boehm, Gabriella [1 ]
Gomez-Torrecillas, Jose [2 ]
Lopez-Centella, Esperanza [2 ]
机构
[1] Wigner Res Ctr Phys, H-1525 Budapest, Hungary
[2] Univ Granada, Dept Algebra, E-18071 Granada, Spain
基金
匈牙利科学研究基金会;
关键词
Weak bialgebra; Duoidal category; Groupoid; Weak Hopf algebra; Hopf monoid; FINITE QUANTUM GROUPOIDS; HOPF-ALGEBRAS; MONOIDAL CATEGORIES; CONVOLUTION; COALGEBRAS;
D O I
10.1016/j.jalgebra.2013.09.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weak (Hopf) bialgebras are described as (Hopf) bimonoids in appropriate duoidal (also known as 2-monoidal) categories. This interpretation is used to define a category wba of weak bialgebras over a given field. As an application, the "free vector space" functor from the category of small categories with finitely many objects to wba is shown to possess a right adjoint, given by taking (certain) group-like elements. This adjunction is proven to restrict to the full subcategories of groupoids and of weak Hopf algebras, respectively. As a corollary, we obtain equivalences between the category of small categories with finitely many objects and the category of pointed cosemisimple weak bialgebras; and between the category of small groupoids with finitely many objects and the category of pointed cosemisimple weak Hopf algebras. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:801 / 844
页数:44
相关论文
共 50 条
  • [1] Weak (Hopf) Bialgebras
    Bohm, Gabriella
    HOPF ALGEBRAS AND THEIR GENERALIZATIONS FROM A CATEGORY THEORETICAL POINT OF VIEW, 2018, 2226 : 75 - 97
  • [2] WEAK MULTIPLIER BIALGEBRAS
    Boehm, Gabriella
    Gomez-Torrecillas, Jose
    Lopez-Centella, Esperanza
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8681 - 8721
  • [3] Weak Bialgebras of fractions
    Bennoun, Steve
    Pfeiffer, Hendryk
    JOURNAL OF ALGEBRA, 2013, 385 : 145 - 163
  • [4] WEAK BRAIDED BIALGEBRAS AND WEAK ENTWINING STRUCTURES
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) : 306 - 316
  • [5] CATEGORY OF FINITE BIALGEBRAS OVER A FIELD
    OORT, F
    STROOKER, JR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (02): : 161 - &
  • [6] WEAK BIALGEBRAS AND MONOIDAL CATEGORIES
    Boehm, G.
    Caenepeel, S.
    Janssen, K.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) : 4584 - 4607
  • [7] On the category of modules over some semisimple bialgebras
    V. A. Artamonov
    R. B. Mukhatov
    R. Wisbauer
    Arabian Journal of Mathematics, 2012, 1 (1) : 29 - 38
  • [8] S-protomodularity of the category of cocommutative bialgebras
    Sterck, Florence
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (12)
  • [9] On the category of modules over some semisimple bialgebras
    Artamonov, V. A.
    Mukhatov, R. B.
    Wisbauer, R.
    ARABIAN JOURNAL OF MATHEMATICS, 2012, 1 (01) : 29 - 38
  • [10] Comodules over weak multiplier bialgebras
    Boehm, Gabriella
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (05)