A new tower of Rankin-Selberg integrals

被引:2
|
作者
Ginzburg, D [1 ]
Hundley, J
机构
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1090/S1079-6762-06-00160-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recall the notion of a tower of Rankin-Selberg integrals, and two known towers, making observations of how the integrals within a tower may be related to one another via formal manipulations, and offering a heuristic for how the L-functions should be related to one another when the integrals are related in this way. We then describe three new integrals in a tower on the group E-6, and find out which L-functions they represent. The heuristics also predict the existence of a fourth integral.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [1] Archimedean Rankin-Selberg Integrals
    Jacquet, Herve
    AUTOMORPHIC FORMS AND L-FUNCTIONS II. LOCAL ASPECTS, 2009, 489 : 57 - 172
  • [2] SOME RESULTS ON ARCHIMEDEAN RANKIN-SELBERG INTEGRALS
    Chai, Jingsong
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (02) : 277 - 305
  • [3] CERTAIN RANKIN-SELBERG INTEGRALS FOR UNITARY GROUPS
    Tsuzuki, Masao
    TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (01) : 115 - 164
  • [4] Rankin-Selberg integrals in two complex variables
    Daniel Bump
    Solomon Friedberg
    David Ginzburg
    Mathematische Annalen, 1999, 313 : 731 - 761
  • [5] Multivariable Rankin-Selberg integrals for orthogonal groups
    Ginzburg, D
    Hundley, J
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (58) : 3097 - 3119
  • [6] Local Rankin-Selberg integrals for Speh representations
    Lapid, Erez M.
    Mao, Zhengyu
    COMPOSITIO MATHEMATICA, 2020, 156 (05) : 908 - 945
  • [7] Rankin-Selberg integrals in two complex variables
    Bump, D
    Friedberg, S
    Ginzburg, D
    MATHEMATISCHE ANNALEN, 1999, 313 (04) : 731 - 761
  • [8] CALCULUS OF ARCHIMEDEAN RANKIN-SELBERG INTEGRALS WITH RECURRENCE RELATIONS
    Ishii, Taku
    Miyazaki, Tadashi
    REPRESENTATION THEORY, 2022, 26 : 714 - 763
  • [9] RANKIN-SELBERG INTEGRALS FOR THE GROUP-G2
    PIATETSKISHAPIRO, I
    RALLIS, S
    SCHIFFMANN, G
    AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (06) : 1269 - 1315
  • [10] On certain Rankin-Selberg integrals on GE6
    Ginzburg, David
    Hundley, Joseph
    NAGOYA MATHEMATICAL JOURNAL, 2008, 191 : 21 - 78