Shortest Path Problems on a Polyhedral Surface

被引:3
|
作者
Cook, Atlas F. [1 ]
Wenk, Carola [2 ]
机构
[1] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
[2] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
Convex polyhedral surface; Voronoi diagram; Shortest path map; Frechet distance; Euclidean shortest path; VORONOI DIAGRAMS; FRECHET DISTANCE; STAR; ALGORITHM; POLYTOPE; QUERIES;
D O I
10.1007/s00453-012-9723-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe algorithms to compute edge sequences, a shortest path map, and the Fr,chet distance for a convex polyhedral surface. Distances on the surface are measured by the length of a Euclidean shortest path. We describe how the star unfolding changes as a source point slides continuously along an edge of the convex polyhedral surface. We describe alternative algorithms to the edge sequence algorithm of Agarwal et al. (SIAM J. Comput. 26(6):1689-1713, 1997) for a convex polyhedral surface. Our approach uses persistent trees, star unfoldings, and kinetic Voronoi diagrams. We also show that the core of the star unfolding can overlap itself when the polyhedral surface is non-convex.
引用
收藏
页码:58 / 77
页数:20
相关论文
共 50 条
  • [1] Shortest Path Problems on a Polyhedral Surface
    Atlas F. Cook
    Carola Wenk
    [J]. Algorithmica, 2014, 69 : 58 - 77
  • [2] Shortest Path Problems on a Polyhedral Surface
    Cook, Atlas F.
    Wenk, Carola
    [J]. ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 156 - 167
  • [3] Approximate shortest path on a polyhedral surface and its applications
    Kanai, T
    Suzuki, H
    [J]. COMPUTER-AIDED DESIGN, 2001, 33 (11) : 801 - 811
  • [4] Applying the improved Chen and Han's algorithm to different versions of shortest path problems on a polyhedral surface
    Xin, Shi-Qing
    Wang, Guo-Jin
    [J]. COMPUTER-AIDED DESIGN, 2010, 42 (10) : 942 - 951
  • [5] Constraint shortest path computation on polyhedral surfaces
    Remi, Synave
    Stefka, Gueorguieva
    Pascal, Desbarats
    [J]. SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, : 366 - 373
  • [6] Finding the shortest path on a polyhedral surface and its application to quality assurance of electric components
    Kageura, M
    Shimada, K
    [J]. JOURNAL OF MECHANICAL DESIGN, 2004, 126 (06) : 1017 - 1026
  • [7] A practical algorithm for approximating shortest weighted path between a pair of points on polyhedral surface
    Roy, S
    Das, SD
    Nandy, SC
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 42 - 52
  • [8] Approximate shortest path queries on weighted polyhedral surfaces
    Aleksandrov, Lyudmil
    Djidjev, Hristo N.
    Guo, Hua
    Maheshwari, Anil
    Nussbaum, Doron
    Sack, Jorg-Rudiger
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 98 - 109
  • [9] Shortest monotone descent path problem in polyhedral terrain
    Roy, S
    Das, S
    Nandy, SC
    [J]. STACS 2005, PROCEEDINGS, 2005, 3404 : 281 - 292
  • [10] Shortest monotone descent path problem in polyhedral terrain
    Roy, Sasanka
    Das, Sandip
    Nandy, Subhas C.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 37 (02): : 115 - 133