Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping

被引:124
|
作者
Silva, Carlos Alberto [1 ,2 ]
Duncanson, Laura [1 ]
Hancock, Steven [4 ]
Neuenschwander, Amy [5 ]
Thomas, Nathan [3 ,6 ]
Hofton, Michelle [1 ]
Fatoyinbo, Lola [3 ]
Simard, Marc [7 ]
Marshak, Charles Z. [7 ]
Armston, John [1 ]
Lutchke, Scott [3 ]
Dubayah, Ralph [1 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20740 USA
[2] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[3] NASA, Biosci Lab, Goddard Space Flight Ctr, Laurel, MD 20707 USA
[4] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[5] Univ Texas Austin, Appl Res Labs, Austin, TX 78712 USA
[6] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA
[7] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
关键词
Biomass; Lidar; Mapping; Fusion; Temperate forest; L-band SAR; LIDAR; MISSION; WOODLANDS;
D O I
10.1016/j.rse.2020.112234
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate mapping of forest aboveground biomass (AGB) is critical for better understanding the role of forests in the global carbon cycle. NASA's current GEDI and ICESat-2 missions as well as the upcoming NISAR mission will collect synergistic data with different coverage and sensitivity to AGB. In this study, we present a multi-sensor data fusion approach leveraging the strength of each mission to produce wall-to-wall AGB maps that are more accurate and spatially comprehensive than what is achievable with any one sensor alone. Specifically, we calibrate a regional L-band radar AGB model using the sparse, simulated spaceborne lidar AGB estimates. We assess our data fusion framework using simulations of GEDI, ICESat-2 and NISAR data from airborne laser scanning (ALS) and UAVSAR data acquired over the temperate high AGB forest and complex terrain in Sonoma County, California, USA. For ICESat-2 and GEDI missions, we simulate two years of data coverage and AGB at footprint level are estimated using realistic AGB models. We compare the performance of our fusion framework when different combinations of the sparse simulated GEDI and ICEsat-2 AGB estimates are used to calibrate our regional L-band AGB models. In addition, we test our framework at Sonoma using (a) 1-ha square grid cells and (b) similarly sized irregularly shaped objects. We demonstrate that the estimated mean AGB across Sonoma is more accurately estimated using our fusion framework than using GEDI or ICESat-2 mission data alone, either with a regular grid or with irregular segments as mapping units. This research highlights methodological opportunities for fusing new and upcoming active remote sensing data streams toward improved AGB mapping through data fusion.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California
    Duncanson, Laura
    Neuenschwander, Amy
    Hancock, Steven
    Thomas, Nathan
    Fatoyinbo, Temilola
    Simard, Marc
    Silva, Carlos A.
    Armston, John
    Luthcke, Scott B.
    Hofton, Michelle
    Kellner, James R.
    Dubayah, Ralph
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 242
  • [2] Forest aboveground biomass estimation combining ICESat-2 and GEDI spaceborne LiDAR data
    Meng, Ge
    Zhao, Dan
    Xu, Cong
    Chen, Junhua
    Li, Xiuwen
    Zheng, Zhaoju
    Zeng, Yuan
    [J]. National Remote Sensing Bulletin, 2024, 28 (06) : 1632 - 1647
  • [3] Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data
    Narine, Lana L.
    Popescu, Sorin
    Zhou, Tan
    Srinivasan, Shruthi
    Harbeck, Kaitlin
    [J]. ANNALS OF FOREST RESEARCH, 2019, 62 (01) : 69 - 86
  • [4] Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data
    Narine, Lana L.
    Popescu, Sorin
    Neuenschwander, Amy
    Zhou, Tan
    Srinivasan, Shruthi
    Harbeck, Kaitlin
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 224 (1-11) : 1 - 11
  • [5] Fusing GEDI with earth observation data for large area aboveground biomass mapping
    Shendryk, Yuri
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [6] Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning
    Narine, Lana L.
    Popescu, Sorin C.
    Malambo, Lonesome
    [J]. REMOTE SENSING, 2019, 11 (12)
  • [7] Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data
    Milenkovic, Milutin
    Reiche, Johannes
    Armston, John
    Neuenschwander, Amy
    De Keersmaecker, Wanda
    Herold, Martin
    Verbesselt, Jan
    [J]. SCIENCE OF REMOTE SENSING, 2022, 5
  • [8] Estimate Forest Aboveground Biomass of Mountain by ICESat-2/ATLAS Data Interacting Cokriging
    Song, Hanyue
    Xi, Lei
    Shu, Qingtai
    Wei, Zhiyue
    Qiu, Shuang
    [J]. FORESTS, 2023, 14 (01):
  • [9] TOWARDS GLOBAL DEM GENERATION BY COMBINING GEDI AND ICESAT-2 DATA
    Tian, Xiangxi
    Shan, Jie
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6964 - 6966
  • [10] Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example
    Narine, Lana L.
    Popescu, Sorin C.
    Malambo, Lonesome
    [J]. REMOTE SENSING, 2020, 12 (11)