Microchips and single-photon avalanche diodes for DNA separation with high sensitivity

被引:20
|
作者
Rech, Ivan
Cova, Sergio
Restelli, Alessandro
Ghioni, Massimo
Chiari, Marcella
Cretich, Marina
机构
[1] Politecn Milan, Dipartimento Elettr & Informat, I-20133 Milan, Italy
[2] MicroPhotonDevices, Bolzano, Italy
[3] CNR, Ist Chim Riconoscimento Mol, I-20133 Milan, Italy
关键词
DNA separation; electrophoresis; microchip; single-photon avalanche diode;
D O I
10.1002/elps.200600144
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Modern techniques for DNA and protein analysis and separation rely on measurements of LIF and face a trend toward employing progressively smaller samples. The currently employed detectors that provide the required ultrahigh sensitivity, e.g. photomultiplier tubes (PMTs), are bulky and/or costly and delicate, whereas a key issue for the development of compact and economical instruments is the availability of miniaturized, inexpensive, and ultrasensitive photodetectors. The planar epitaxial silicon single-photon avalanche diodes (SPADs) combine the typical advantages of microelectronics (miniaturization, ruggedness, low voltage, low power, low cost, etc.) with high sensitivity, even better than that of PMTs. The suitability of such SPADs to microchip CE has been here ascertained by developing a new apparatus with dual-wavelength LIF detection. The apparatus has been experimented in studies on the EOF suppression and on the coating stability and tested in rapid sizing of DNA fragments. The experimental results obtained in the separation of Cy5-labeled oligonucleotide demonstrate sensitivity better than 3 pM, which corresponds to less than 100 fluorescent molecules in the 50 pL illuminated volume.
引用
收藏
页码:3797 / 3804
页数:8
相关论文
共 50 条
  • [1] Silicon single-photon avalanche diodes for high performance parallel photon timing
    Gulinatti, Angelo
    Rech, Ivan
    Cammi, Corrado
    Labanca, Ivan
    Maccagnani, Piera
    Ghioni, Massimo
    [J]. ADVANCED PHOTON COUNTING TECHNIQUES VI, 2012, 8375
  • [2] Modeling of afterpulsing in Single-Photon Avalanche Diodes
    Anti, Michele
    Tosi, Alberto
    Acerbi, Fabio
    Zappa, Franco
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIX, 2011, 7933
  • [3] Accurate model for single-photon avalanche diodes
    Mita, R.
    Palumbo, G.
    Fallica, P. G.
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2008, 2 (02) : 207 - 212
  • [4] Advantages of thin single-photon avalanche diodes
    Tan, S. L.
    Ong, D. S.
    Yow, H. K.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (07): : 2495 - 2499
  • [5] Progress in silicon single-photon avalanche diodes
    Ghioni, Massimo
    Gulinatti, Angelo
    Rech, Ivan
    Zappa, Franco
    Cova, Sergio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (04) : 852 - 862
  • [6] RTS Noise Characterization in Single-Photon Avalanche Diodes
    Karami, Mohammad Azim
    Carrara, Lucio
    Niclass, Cristiano
    Fishburn, Matthew
    Charbon, Edoardo
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (07) : 692 - 694
  • [7] Characterization of Single-Photon Avalanche Diodes in Standard CMOS
    Nouri, Babak
    Dandin, Marc
    Abshire, Pamela
    [J]. 2009 IEEE SENSORS, VOLS 1-3, 2009, : 1891 - +
  • [8] Statistics of avalanche current buildup time in single-photon avalanche diodes
    Tan, C. H.
    Ng, J. S.
    Rees, G. J.
    David, J. P. R.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (04) : 906 - 910
  • [9] Tunneling in submicron CMOS single-photon avalanche diodes
    Karami, Mohammad Azim
    Amiri-Sani, Armin
    Ghormishi, Mohammad Hamzeh
    [J]. CHINESE OPTICS LETTERS, 2014, 12 (01)
  • [10] An Improved Convergent Model for Single-Photon Avalanche Diodes
    Zheng, Lixia
    Tian, Jiangjiang
    Weng, Ziqing
    Hu, Huan
    Wu, Jin
    Sun, Weifeng
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (10) : 798 - 801