A statistical model of query log generation

被引:0
|
作者
Dupret, Georges [1 ]
Piwowarski, Benjamin [1 ]
Hurtado, Carlos [1 ]
Mendoza, Marcelo [1 ]
机构
[1] Univ Chile, Dept Ciencias Computac, Santiago, Chile
来源
STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS | 2006年 / 4209卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Query logs record past query sessions across a time span. A statistical model is proposed to explain the log generation process. Within a search engine list of results, the model explains the document selection - a user's click - by taking into account both a document position and its popularity. We show that it is possible to quantify this influence and consequently estimate document "un-biased" popularities. Among other applications, this allows to re-order the result list to match more closely user preferences and to use the logs as a feedback to improve search engines.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [1] Semantic log analysis based on a user query behavior model
    Kawamae, N
    Mukaigaito, T
    Hanaki, M
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 107 - 114
  • [2] A blockchain-based log storage model with efficient query
    Xu, Gang
    Yun, Fan
    Xu, Shiyuan
    Yu, Yiying
    Chen, Xiu-Bo
    Dong, Mianxiong
    SOFT COMPUTING, 2023, 27 (19) : 13779 - 13787
  • [3] A blockchain-based log storage model with efficient query
    Gang Xu
    Fan Yun
    Shiyuan Xu
    Yiying Yu
    Xiu-Bo Chen
    Mianxiong Dong
    Soft Computing, 2023, 27 : 13779 - 13787
  • [4] A characterization of strong learnability in the Statistical Query Model
    Simon, Hans Ulrich
    STACS 2007, PROCEEDINGS, 2007, 4393 : 393 - 404
  • [5] Learning to Mine Query Subtopics from Query Log
    Zhang, Zhenzhong
    Sun, Le
    Han, Xianpei
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, 2015, : 341 - 345
  • [6] Mining query log graphs towards a query folksonomy
    Francisco, Alexandre P.
    Baeza-Yates, Ricardo
    Oliveira, Arlindo L.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012, 24 (17): : 2179 - 2192
  • [7] QUERY INTENT DETECTION BASED ON QUERY LOG MINING
    Zamora, Juan
    Mendoza, Marcelo
    Allende, Hector
    JOURNAL OF WEB ENGINEERING, 2014, 13 (1-2): : 24 - 52
  • [8] AUTOMATIC BUILDING INFORMATION MODEL QUERY GENERATION
    Jiang, Yufei
    Yu, Nan
    Ming, Jiang
    Lee, Sanghoon
    DeGraw, Jason
    Yen, John
    Messner, John I.
    Wu, Dinghao
    JOURNAL OF INFORMATION TECHNOLOGY IN CONSTRUCTION, 2015, 20 : 518 - 535
  • [9] Model-driven Query Generation for Elasticsearch
    Akdal, Berkay
    Keskin, Zehra Gul Cabuk
    Ekinci, Erdem Eser
    Kardas, Geylani
    PROCEEDINGS OF THE 2018 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2018, : 853 - 862
  • [10] Automatic building information model query generation
    Jian, Yufei
    Yu, Nan
    Ming, Jiang
    Lee, Sanghoon
    Degraw, Jason
    Yen, John
    Messner, John I.
    Wu, Dinghao
    Journal of Information Technology in Construction, 2015, 20 : 518 - 535