A Generalization of the Suborbital Graphs Generating Fibonacci Numbers for the Subgroup Γ3

被引:0
|
作者
Ozturk, Seda [1 ]
机构
[1] Karadeniz Tech Univ, Fac Sci, Dept Math, Trabzon, Turkey
关键词
Modular group; Suborbital graph; Fibonacci numbers; The subgroup Gamma(3);
D O I
10.2298/FIL2002631O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Modular group Gamma is the most well-known discrete group with many applications. This work investigates some subgraphs of the subgroup Gamma(3), defined by {((c d) (a b)) is an element of Gamma : ab + cd 0 (mod 3)} In [1], the subgraph F-1,F-1 of the subgroup Gamma(3) subset of Gamma is studied, and Fibonacci numbers are obtained by means of the subgraph of F-1,F-1. In this paper, we give a generalization of the subgraphs generating Fibonacci numbers for the subgroup Gamma(3) and some subgraphs having special conditions.
引用
下载
收藏
页码:631 / 638
页数:8
相关论文
共 50 条
  • [1] More Fibonacci Numbers Arising from the Suborbital Graphs for the Congruence Subgroup Γ0(n/h)
    Ozturk, Seda
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [2] Suborbital Graphs for a Special Subgroup of the SL(3, Z)
    Besenk, Murat
    FILOMAT, 2016, 30 (03) : 593 - 602
  • [3] GENERALIZATION OF FIBONACCI NUMBERS
    RECSKI, A
    FIBONACCI QUARTERLY, 1975, 13 (04): : 315 - 317
  • [4] Suborbital graphs of the congruence subgroup Γ0(N)
    Jaipong, Pradthana
    Promduang, Wanchalerm
    Chaichana, Khuanchanok
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 181 - 192
  • [5] FIBONACCI NUMBERS OF GRAPHS
    PRODINGER, H
    TICHY, RF
    FIBONACCI QUARTERLY, 1982, 20 (01): : 16 - 21
  • [6] Fibonacci numbers and Lucas numbers in graphs
    Technical University of Rzeszów, Faculty of Mathematics and Applied Physics, ul.W.Pola 2, 35-959 Rzeszów, Poland
    Discrete Appl Math, 1600, 4 (864-868):
  • [7] Fibonacci numbers and Lucas numbers in graphs
    Startek, Mariusz
    Wloch, Andrzej
    Wloch, Iwona
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 864 - 868
  • [8] SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF Γ0 (m)
    Kader, S.
    Guler, B. O.
    Deger, A. H.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2010, 34 (A4): : 305 - 312
  • [9] Suborbital graphs of a extended congruence subgroup by Fricke involution
    Besenk, Murat
    ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676
  • [10] Graphs, partitions and Fibonacci numbers
    Knopfmacher, Arnold
    Tichy, Robert F.
    Wagner, Stephan
    Ziegler, Volker
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (10) : 1175 - 1187