Direct growth of carbon nanotubes forests on carbon fibers to replace microporous layers in proton exchange membrane fuel cells

被引:24
|
作者
Fontana, Marie [1 ]
Ramos, Raphael [1 ]
Morin, Arnaud [1 ]
Dijon, Jean [1 ]
机构
[1] Univ Grenoble Alpes, LITEN, CEA, F-38000 Grenoble, France
关键词
GAS-DIFFUSION LAYERS; POROUS CARBON; LIQUID WATER; IN-SITU; PERFORMANCE; CATALYST; PAPER; ENHANCEMENT; ELECTRODE; SURFACE;
D O I
10.1016/j.carbon.2020.10.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel microporous layer structure for fuel cell application has been developed based on the direct growth of thin multiwall carbon nanotubes forests on the carbon fiber support of a commercial gas diffusion media free of hydrophobic treatment. The growth process is a hot filaments assisted chemical vapor deposition coupled with a specific catalyst dedicated to the growth of carbon nanotubes on carbon support. The so obtained carbon nanotube forests are perpendicularly aligned all along the carbon fibers and cover the surface of the gas diffusion media, providing a unique and new structure of microporous layer. The carbon nanotubes composing the forests are about 10 mu m-20 mu m long, with about 6 walls for an average diameter of 7.5-8 nm. Fuel cell testing demonstrated a performance improvement up to 30% compared to the best state of the art gas diffusion media, even in the presence of liquid water in the fuel cell, which is the main issue limiting performances. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:762 / 771
页数:10
相关论文
共 50 条
  • [1] Carbon nanotubes grown in situ on carbon paper as a microporous layer for proton exchange membrane fuel cells
    Xie, Zhiyong
    Chen, Guofen
    Yu, Xiao
    Hou, Ming
    Shao, Zhigang
    Hong, Shaojing
    Mu, Cong
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (29) : 8958 - 8965
  • [2] Impact of Carbon Porosity on the Performance of Cathode Microporous Layers in Proton Exchange Membrane Fuel Cells
    Govindarajan, R.
    Payoyo, J.
    Fang, B.
    Bonakdarpour, A.
    Wilkinson, D. P.
    [J]. FUEL CELLS, 2020, 20 (02) : 220 - 223
  • [3] Carbon-Nanowall Microporous Layers for Proton Exchange Membrane Fuel Cell
    Balan, Adriana Elena
    Bita, Bogdan Ionut
    Vizireanu, Sorin
    Dinescu, Gheorghe
    Stamatin, Ioan
    Trefilov, Alexandra Maria Isabel
    [J]. MEMBRANES, 2022, 12 (11)
  • [4] In Situ Flame-Synthesized Carbon Nanotubes on Carbon Paper as a Microporous Layer for Proton Exchange Membrane Fuel Cells
    Dan, Xiong
    li, Wei
    Ning, Fandi
    Wen, Qinglin
    He, Lei
    Li, Yali
    He, Can
    Zhou, Xiaochun
    [J]. ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6019 - 6028
  • [5] Enhancement of proton exchange membrane fuel cell performance by doping microporous layers of gas diffusion layers with multiwall carbon nanotubes
    Schweiss, Ruediger
    Steeb, Marcus
    Wilde, Peter M.
    Schubert, Tim
    [J]. JOURNAL OF POWER SOURCES, 2012, 220 : 79 - 83
  • [6] Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode
    Saha, Madhu Sudan
    Kundu, Arunabha
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6255 - 6261
  • [7] Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells
    Kim, Jaeyeon
    Kim, Hyeok
    Song, Hyeonjun
    Kim, Dasol
    Kim, Geon Hwi
    Im, Dasom
    Jeong, Youngjin
    Park, Taehyun
    [J]. ENERGY, 2021, 227
  • [8] Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells
    Celebi, Serdar
    Nijhuis, T. Alexander
    van der Schaaf, John
    de Bruijn, Frank A.
    Schouten, Jaap C.
    [J]. CARBON, 2011, 49 (02) : 501 - 507
  • [9] The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells
    Chiang, Yu-Chun
    Hsieh, Min-Kuei
    Hsu, He-Hong
    [J]. THIN SOLID FILMS, 2014, 570 : 221 - 229
  • [10] Performance of porous carbon nanofibers as microporous layer for proton exchange membrane fuel cells
    Mao, Linchang
    Jin, Junhong
    Yang, Shenglin
    Li, Guang
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (10): : 3995 - 4001