Given p is an element of(1, infinity), let G be a countable Powers group, and let (G, A, a) be a separable nondegenerately representable isometric G-L-p-operator algebra. We show that if A is unital and G-simple then the reduced L-p-operator crossed product of A by G, F-r(p) (G, A, alpha), is simple. Furthermore, traces on F-r(p) (G, A, alpha) are in natural bijection with G-invariant traces on A via the standard conditional expectation. In particular, if A has a unique normalized trace then so does F-r(p) (G, A, alpha). These results generalize special cases of some results due to de la Harpe and Skanadalis in the case of C*-algebras.
机构:
Univ Buenos Aires, Dept Matemat, Inst Santalo, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Dept Matemat, Inst Santalo, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
Cortinas, Guillermo
Eugenia Rodriguez, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Dept Ciencias Exactas Ciclo Basic Comun, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Dept Matemat, Inst Santalo, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina