Electronic properties of armchair graphene nanoribbons with BN-doping

被引:14
|
作者
Chen, L. N. [1 ,2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ South China, Sch Comp Sci & Technol, Hengyang 421001, Peoples R China
关键词
Armchair graphene nanoribbon; B/N doping; Energy gap; First-principles;
D O I
10.1016/j.ssc.2014.03.026
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using the first-principles calculations based on density functional theory, we investigated the electronic properties of armchair graphene nanoribbons (AGNRs) with boron nitrogen (BN) doping. The B and N impurities can adjust the electronic properties of the AGNRs, whose features strongly depend on the impurity types and the ribbon width of the AGNRs. Interestingly, with the increase of the ribbon width, the energy gap of the AGNRs with B/N pair doping is oscillatory. The AGNRs with B or N doping show metallic behavior, and the localized unsaturated electronic states on the edge atoms lead to magnetism. These unconventional doping effects could be used to design semiconductor electronic devices. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [1] Sequential BN-doping induced tuning of electronic properties in zigzag-edged graphene nanoribbons: a computational approach
    Sarmah, Amrit
    Hobza, Pavel
    RSC ADVANCES, 2018, 8 (20): : 10964 - 10974
  • [2] Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping
    Liu, J.
    Zhang, Z. H.
    Deng, X. Q.
    Fan, Z. Q.
    Tang, G. P.
    ORGANIC ELECTRONICS, 2015, 18 : 135 - 142
  • [3] Electronic structures and transport properties of BN nanodot superlattices of armchair graphene nanoribbons
    安丽萍
    刘念华
    半导体学报, 2011, 32 (09) : 6 - 11
  • [4] Electronic structures and transport properties of BN nanodot superlattices of armchair graphene nanoribbons
    An Liping
    Liu Nianhua
    JOURNAL OF SEMICONDUCTORS, 2011, 32 (09)
  • [5] Electronic properties of armchair graphene nanoribbons
    Rozhkov, A. V.
    Savel'ev, S.
    Nori, Franco
    PHYSICAL REVIEW B, 2009, 79 (12):
  • [6] Electronic Properties of Armchair Graphene Nanoribbons
    Bhojani, Amit K.
    Soni, Himadri R.
    Jha, Prafulla K.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [7] Electronic properties of twisted armchair graphene nanoribbons
    Sadrzadeh, Arta
    Hua, Ming
    Yakobson, Boris I.
    APPLIED PHYSICS LETTERS, 2011, 99 (01)
  • [8] Tuning the electronic properties of graphene oxide nanoribbons with armchair edges through lithium doping
    Wang, Weihua
    Zhao, Cuilan
    Li, Peifang
    RSC ADVANCES, 2016, 6 (44): : 38135 - 38139
  • [9] Electronic structure and transport properties of armchair graphene nanoribbons
    Ouyang Fang-Ping
    Xu Hui
    Li Ming-Jun
    Xiao Jin
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (02) : 328 - 332
  • [10] Electronic and magnetic properties of armchair and zigzag graphene nanoribbons
    Owens, Frank J.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (19):