QuMinS: Fast and scalable querying, mining and summarizing multi-modal databases

被引:0
|
作者
Cordeiro, Robson L. F. [1 ]
Guo, Fan [2 ]
Haverkamp, Donna S. [3 ]
Horne, James H. [3 ]
Hughes, Ellen K. [3 ]
Kim, Gunhee [2 ]
Romani, Luciana A. S. [4 ]
Coltri, Priscila P. [5 ]
Souza, Tamires T. [1 ]
Traina, Agma J. M. [1 ]
Traina, Caetano, Jr. [1 ]
Faloutsos, Christos [2 ]
机构
[1] Univ Sao Paulo, BR-13560970 Sao Carlos, SP, Brazil
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Sci Applicat Int Corp, Mclean, VA 22102 USA
[4] Embrapa Agr Informat, BR-13083886 Campinas, SP, Brazil
[5] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
Low-labor labeling; Summarization; Outlier detection; Query by example; Clustering; Satellite imagery; IMAGE ANNOTATION; RANDOM-WALK; CLASSIFICATION; RECOGNITION; OBJECT; GRAPH;
D O I
10.1016/j.ins.2013.11.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user's attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) - given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing - in the same setting, find clusters, the top-N-O outlier images, and the N-R images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method's practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 229
页数:19
相关论文
共 50 条
  • [1] Multi-modal spatial querying
    Egenhofer, MJ
    ADVANCES IN GIS RESEARCH II, 1997, : 785 - 799
  • [2] Physical Querying with Multi-Modal Sensing
    Baek, Iljoo
    Stine, Taylor
    Dash, Denver
    Xiao, Fanyi
    Sheikh, Yaser
    Movshovitz-Attias, Yair
    Chen, Mei
    Hebert, Martial
    Kanade, Takeo
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 183 - 190
  • [3] Scalable analysis of multi-modal biomedical data
    Smith, Jaclyn
    Shi, Yao
    Benedikt, Michael
    Nikolic, Milos
    GIGASCIENCE, 2021, 10 (09):
  • [4] Flexible Multi-modal Hashing for Scalable Multimedia Retrieval
    Zhu, Lei
    Lu, Xu
    Cheng, Zhiyong
    Li, Jingjing
    Zhang, Huaxiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (02)
  • [5] Inherent Fusion: Towards Scalable Multi-Modal Similarity Search
    Budikova, Petra
    Batko, Michal
    Novak, David
    Zezula, Pavel
    JOURNAL OF DATABASE MANAGEMENT, 2016, 27 (04) : 1 - 23
  • [6] Scalable and multi-modal single-cell spatial genomics
    Chen, Fei
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2023, 64 : 37 - 37
  • [7] Efficient multi-modal fusion on supergraph for scalable image annotation
    Amiri, S. Hamid
    Jarnzad, Mansour
    PATTERN RECOGNITION, 2015, 48 (07) : 2241 - 2253
  • [8] KEMoS: A knowledge-enhanced multi-modal summarizing framework for Chinese online meetings
    Qi, Peng
    Sun, Yan
    Yao, Muyan
    Tao, Dan
    NEURAL NETWORKS, 2024, 178
  • [9] Fast Multi-Modal Unified Sparse Representation Learning
    Verma, Mridula
    Shukla, Kaushal Kumar
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 448 - 452
  • [10] A fast multi-modal approach to facial feature detection
    Boehnen, C
    Russ, T
    WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2005, : 135 - 142