Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor

被引:77
|
作者
Qian, WZ [1 ]
Liu, T
Wang, ZW
Wei, F
Li, ZF
Luo, GH
Li, YD
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Tianjin Univ, Dept Chem Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotubes; catalyst deactivation; multi-stage fluidized bed reactor; nickel catalyst; methane decomposition;
D O I
10.1016/j.apcata.2003.10.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane decomposition over a Ni/Cu/Al2O3 catalyst is studied in a two-stage fluidized bed reactor. Low temperature is adopted in the lower stage and high temperature in the upper stage. This allows the fluidized catalysts to decompose methane with high activity in the high temperature condition: then the carbon produced will diffuse effectively to form carbon nanotubes (CNTs) in both low and high temperature regions. Thus the catalytic cycle of carbon production and carbon diffusion in micro scale can be tailored by a macroscopic method, which permits the catalyst to have high activity and high thermal stability even at 1123 K for hydrogen production for long times. Such controlled temperature condition also provides an increased thermal driving force for the nucleation of CNTs and hence favors the graphitization of CNTs, characterized by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and XRD. Multistage operation with different temperatures in a fluidized bed reactor is an effective way to meet the both requirements of hydrogen production and preparation of CNTs with relatively perfect microstructures. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] Preparation of hydrogen and carbon nanotubes via methane decomposition in fluidized-bed reactor
    Liu, Tang
    Qian, Weizhong
    Wang, Zhanwen
    Wei, Fei
    Jin, Yong
    Li, Juncheng
    Li, Yongdan
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2003, 54 (11): : 1614 - 1618
  • [2] Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor
    Hyun Tae Jang
    Wang Seog Cha
    Korean Journal of Chemical Engineering, 2007, 24 : 374 - 377
  • [3] Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor
    Jang, Hyun Tae
    Cha, Wang Seog
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 24 (02) : 374 - 377
  • [4] Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed
    Yang, Ren-Xuan
    Wu, Shan-Luo
    Chuang, Kui-Hao
    Wey, Ming-Yen
    RENEWABLE ENERGY, 2020, 159 : 10 - 22
  • [5] Catalytic methane decomposition using a fluidized bed reactor for hydrogen production
    Ma, Shankang
    Wang, Yuguo
    Shah, Naresh
    Huffman, Gerald P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1673 - U1674
  • [6] Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor
    Ammendola, P.
    Chirone, R.
    Ruoppolo, G.
    Russo, G.
    CHEMICAL ENGINEERING JOURNAL, 2009, 154 (1-3) : 287 - 294
  • [7] Thermophilic hydrogen and methane production from sugarcane stillage in two-stage anaerobic fluidized bed reactors
    Ramos, Lucas Rodrigues
    Silva, Edson Luiz
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (08) : 5239 - 5251
  • [8] Production of hydrogen from methane decomposition using nanosized carbon black as catalyst in a fluidized-bed reactor
    Chen, Jiuling
    He, Miao
    Wang, Gaowei
    Li, Yongdan
    Zhu, Zhonghua John
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (24) : 9730 - 9736
  • [9] Production of hydrogen and carbon nanofibers by thermal decomposition of methane using metal catalysts in a fluidized bed reactor
    Pinilla, J. L.
    Moliner, R.
    Suelves, I.
    Lazaro, M. J.
    Echegoyen, Y.
    Palacios, J. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (18) : 4821 - 4829
  • [10] Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed
    Jae Uk Jung
    Wooseok Nam
    Ki June Yoon
    Gui Young Han
    Korean Journal of Chemical Engineering, 2007, 24 : 674 - 678