Algorithm 1012: DELAUNAYSPARSE: Interpolation via a Sparse Subset of the Delaunay Triangulation in Medium to High Dimensions

被引:6
|
作者
Chang, Tyler H. [1 ]
Watson, Layne T. [2 ]
Lux, Thomas C. H. [1 ]
Butt, Ali R. [1 ]
Cameron, Kirk W. [1 ]
Hong, Yili [3 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Comp Sci, MC 0106, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Comp Sci Math & Aerosp & Ocean Engn, MC 0106, Blacksburg, VA 24061 USA
[3] Virginia Polytech Inst & State Univ, Dept Stat, MC 0439, Blacksburg, VA 24061 USA
来源
关键词
Delaunay triangulation; interpolation; multivariate approximation; high-dimensional data;
D O I
10.1145/3422818
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
DELAUNAYSPARSE contains both serial and parallel codes written in Fortran 2003 (with OpenMP) for performing medium- to high-dimensional interpolation via the Delaunay triangulation. To accommodate the exponential growth in the size of the Delaunay triangulation in high dimensions, DELAUNAYSPARSE computes only a sparse subset of the complete Delaunay triangulation, as necessary for performing interpolation at the user specified points. This article includes algorithm and implementation details, complexity and sensitivity analyses, usage information, and a brief performance study.
引用
收藏
页数:20
相关论文
共 16 条
  • [1] A Polynomial Time Algorithm for Multivariate Interpolation in Arbitrary Dimension via the Delaunay Triangulation
    Chang, Tyler H.
    Watson, Layne T.
    Lux, Thomas C. H.
    Li, Bo
    Xu, Li
    Butt, Ali R.
    Cameron, Kirk W.
    Hong, Yili
    ACMSE '18: PROCEEDINGS OF THE ACMSE 2018 CONFERENCE, 2018,
  • [2] A space exploration algorithm for multiparametric programming via Delaunay triangulation
    Baris Burnak
    Justin Katz
    Efstratios N. Pistikopoulos
    Optimization and Engineering, 2021, 22 : 555 - 579
  • [3] A space exploration algorithm for multiparametric programming via Delaunay triangulation
    Burnak, Baris
    Katz, Justin
    Pistikopoulos, Efstratios N.
    OPTIMIZATION AND ENGINEERING, 2021, 22 (01) : 555 - 579
  • [4] PREDICTING SYSTEM PERFORMANCE BY INTERPOLATION USING A HIGH-DIMENSIONAL DELAUNAY TRIANGULATION
    Chang, Tyler H.
    Watson, Layne T.
    Lux, Thomas C. H.
    Bernard, Jon
    Li, Bo
    Xu, Li
    Back, Godmar
    Butt, Ali R.
    Cameron, Kirk W.
    Hong, Yili
    HIGH PERFORMANCE COMPUTING SYMPOSIUM (HPC 2018), 2018, 50 (04):
  • [5] Interpolation calculation of an optical path surface based on Delaunay triangulation and sector boundary algorithm
    Yang Ailing
    Tang Mingming
    Zhang Jinliang
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL III: MODELLING AND SIMULATION IN ELECTRONICS, COMPUTING, AND BIO-MEDICINE, 2008, : 86 - 90
  • [6] ALGORITHM FOR DELAUNAY TRIANGULATION AND CONVEX-HULL COMPUTATION USING A SPARSE-MATRIX
    FANG, TP
    PIEGL, LA
    COMPUTER-AIDED DESIGN, 1992, 24 (08) : 425 - 436
  • [7] An improved algorithm of point-by-point interpolation by using local dynamic optimal Delaunay triangulation network
    Dong, J. (d.j-studio@163.com), 1600, Editorial Board of Medical Journal of Wuhan University (38):
  • [8] EFFICIENT VLSI PARALLEL ALGORITHM FOR DELAUNAY TRIANGULATION ON ORTHOGONAL TREE NETWORK IN 2-DIMENSIONS AND 3-DIMENSIONS
    SAXENA, S
    BHATT, PCP
    PRASAD, VC
    IEEE TRANSACTIONS ON COMPUTERS, 1990, 39 (03) : 400 - 404
  • [9] STOCHASTIC COLLOCATION METHODS ON UNSTRUCTURED GRIDS IN HIGH DIMENSIONS VIA INTERPOLATION
    Narayan, Akil
    Xiu, Dongbin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1729 - A1752
  • [10] Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions
    Agarwal, Alekh
    Negahban, Sahand N.
    Wainwright, Martin J.
    2014 48TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2014,