Real-time Adaptive State of Energy Estimation of Lithium-ion Batteries Applied in Electric Vehicles

被引:0
|
作者
Gao, Jianping [1 ]
He, Hongwen [2 ]
Zhang, Xiaowei [3 ]
Xing, Ling [4 ]
机构
[1] Henan Univ Sci & Technol, Sch Vehicle & Transportat Engn, Luoyang 471003, Peoples R China
[2] Bejing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[3] Zhengzhou Yutong Bus Co Ltd, Zhengzhou 450016, Henan, Peoples R China
[4] Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Peoples R China
关键词
Electric vehicles; lithium-ion battery; state of energy; adaptive extended Kalman filter; OF-CHARGE ESTIMATION; MANAGEMENT-SYSTEMS; MODEL; PREDICTION; PACKS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State of energy estimation of lithium-ion batteries applied in electric vehicles is required for users to predict the battery recharge time. The paper developed a new mathematical model for estimating state of energy in real-time. The recursive least squares method with an optimal forgetting factor was used to identify model parameters, and the adaptive extended Kalman filter was used to estimate the state of energy. Experimental results indicated that the developed method can realize accurate model parameter estimation with modeling error less than 2 mV. The state of energy estimation error was less than 2%. The developed method can still estimate accurate state of energy even if an erroneous initial state of energy value was available.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] State of health estimation for lithium-ion batteries in real-world electric vehicles
    Wu, Ji
    Fang, LeiChao
    Dong, GuangZhong
    Lin, MingQiang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (01) : 47 - 56
  • [2] State of health estimation for lithium-ion batteries in real-world electric vehicles
    WU Ji
    FANG LeiChao
    DONG GuangZhong
    LIN MingQiang
    Science China(Technological Sciences), 2023, 66 (01) : 47 - 56
  • [3] State of health estimation for lithium-ion batteries in real-world electric vehicles
    Ji Wu
    LeiChao Fang
    GuangZhong Dong
    MingQiang Lin
    Science China Technological Sciences, 2023, 66 : 47 - 56
  • [4] A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles
    Gao, Jianping
    Zhang, Yongzhi
    He, Hongwen
    ENERGIES, 2015, 8 (08): : 8594 - 8612
  • [5] An Adaptive Observer Design for Real-Time Parameter Estimation in Lithium-Ion Batteries
    Limoge, Damas W.
    Annaswamy, Anuradha M.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (02) : 505 - 520
  • [6] An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles
    Tian, Yong
    Chen, Chaoren
    Xia, Bizhong
    Sun, Wei
    Xu, Zhihui
    Zheng, Weiwei
    ENERGIES, 2014, 7 (09): : 5995 - 6012
  • [7] State of Charge Estimation for Lithium-Ion Batteries In Electric and Hybrid Vehicles
    Bostan, Ege Anil
    Sezer, Volkan
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 34 - 38
  • [8] Adaptive optimal observer for real-time state of charge estimation of lithium-ion batteries in robotic systems
    Zhao, Jun
    Lu, Zhenguo
    Wang, Guang
    ROBOTIC INTELLIGENCE AND AUTOMATION, 2024, 44 (06): : 841 - 853
  • [9] Model-based State-of-energy Estimation of Lithium-ion Batteries in Electric Vehicles
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    CUE 2015 - APPLIED ENERGY SYMPOSIUM AND SUMMIT 2015: LOW CARBON CITIES AND URBAN ENERGY SYSTEMS, 2016, 88 : 998 - 1004
  • [10] An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2016, 305 : 80 - 88