A global monthly climatology of total alkalinity: a neural network approach

被引:32
|
作者
Broullon, Daniel [1 ]
Perez, Fiz F. [1 ]
Velo, Anton [1 ]
Hoppema, Mario [2 ]
Olsen, Are [3 ,4 ]
Takahashi, Taro [5 ,7 ]
Key, Robert M. [6 ]
Tanhua, Toste [7 ]
Gonzalez-Davila, Melchor [8 ]
Jeansson, Emil [9 ]
Kozyr, Alex [10 ]
van Heuven, Steven M. A. C. [11 ]
机构
[1] CSIC, Inst Invest, Eduardo Cabello 6, Vigo 36208, Spain
[2] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Postfach 120161, D-27515 Bremerhaven, Germany
[3] Univ Bergen, Geophys Inst, Allegaten 70, N-5007 Bergen, Norway
[4] Bjerknes Ctr Climate Res, Allegaten 70, N-5007 Bergen, Norway
[5] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[6] Princeton Univ, Atmospher & Ocean Sci, 300 Forrestal Rd,Sayre Hall, Princeton, NJ 08544 USA
[7] GEOMAR Helmholtz Ctr Ocean Res Kiel, Dusternbrooker Weg 20, D-24105 Kiel, Germany
[8] Univ Las Palmas Gran Canaria, IOCAG, Inst Oceanog & Cambio Global, Las Palmas Gran Canaria, Spain
[9] Bjerknes Ctr Climate Res, Uni Res Climate, Jahnebakken 5, N-5007 Bergen, Norway
[10] NOAA, Natl Ctr Environm Informat, 1315 East West Hwy, Silver Spring, MD 20910 USA
[11] Univ Groningen, Fac Sci & Engn, Isotope Res Energy & Sustainabil Res Inst Groning, Nijenborgh 6, NL-9747 AG Groningen, Netherlands
基金
欧盟地平线“2020”;
关键词
SURFACE OCEAN; INORGANIC CARBON; CO2; ACIDIFICATION; VARIABILITY; SATURATION; CHEMISTRY; IMPACTS; SEA; PH;
D O I
10.5194/essd-11-1109-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (A(T)) is one variable of the seawater CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of the A(T) variability and A(T) concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 mu mol kg(-1). Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean time-series stations showed an acceptable RMSE range of 3-6.2 mu mol kg(-1). Successful modeling of the monthly A(T) variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The climatological fields of A(T) were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutrients from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1 degrees x 1 degrees in the horizontal, 102 depth levels (0-5500 m) in the vertical and monthly (0-1500 m) to annual (1550-5500 m) temporal resolution. The product is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullon et al., 2019).
引用
收藏
页码:1109 / 1127
页数:19
相关论文
共 50 条
  • [1] A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
    Broullon, Daniel
    Perez, Fiz F.
    Velo, Anton
    Hoppema, Mario
    Olsen, Are
    Takahashi, Taro
    Key, Robert M.
    Tanhua, Toste
    Magdalena Santana-Casiano, J.
    Kozyr, Alex
    [J]. EARTH SYSTEM SCIENCE DATA, 2020, 12 (03) : 1725 - 1743
  • [2] The Global Historical Climatology Network Monthly Temperature Dataset, Version 4
    Menne, Matthew J.
    Williams, Claude N.
    Gleason, Byron E.
    Rennie, J. Jared
    Lawrimore, Jay H.
    [J]. JOURNAL OF CLIMATE, 2018, 31 (24) : 9835 - 9854
  • [3] The Global Historical Climatology Network Monthly Precipitation Dataset, Version 4
    Applequist, Scott
    Durre, Imke
    Vose, Russell
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [4] Total alkalinity estimation using MLR and neural network techniques
    Velo, A.
    Perez, F. F.
    Tanhua, T.
    Gilcoto, M.
    Rios, A. F.
    Key, R. M.
    [J]. JOURNAL OF MARINE SYSTEMS, 2013, 111 : 11 - 18
  • [5] Global historical climatology network (GHCN) quality control of monthly temperature data
    Peterson, TC
    Vose, R
    Schmoyer, R
    Razuvaev, V
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 1998, 18 (11) : 1169 - 1179
  • [6] Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
    Laruelle, Goulven G.
    Landschutzer, Peter
    Gruber, Nicolas
    Tison, Jean-Louis
    Delille, Bruno
    Regnier, Pierre
    [J]. BIOGEOSCIENCES, 2017, 14 (19) : 4545 - 4561
  • [7] Global Surface Ocean Total Alkalinity Estimation: The Machine Learning Approach
    Shaik, Ibrahim
    Yadav, Sandesh
    Krishna, Gowtham
    Mahesh, P.
    Nagamani, P. V.
    Begum, S. K.
    Manmode, Yash
    Rao, G. Srinivasa
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [8] A GLOBAL MONTHLY SEA-SURFACE TEMPERATURE CLIMATOLOGY
    SHEA, DJ
    TRENBERTH, KE
    REYNOLDS, RW
    [J]. JOURNAL OF CLIMATE, 1992, 5 (09) : 987 - 1001
  • [9] An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3
    Lawrimore, Jay H.
    Menne, Matthew J.
    Gleason, Byron E.
    Williams, Claude N.
    Wuertz, David B.
    Vose, Russell S.
    Rennie, Jared
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [10] Global model-based monthly mean rainfall climatology
    Krishnamurti, TN
    Jha, B
    Christides, Z
    [J]. ATMOSFERA, 1999, 12 (04): : 199 - 203