Can machine learning be used to extract relevant burn injury information automatically from 2D photographs?

被引:0
|
作者
Smith, K. [1 ,2 ]
Abubakar, A. [3 ]
Jivan, S. [4 ]
Tobin, D. [1 ,5 ]
Mahajan, A. [1 ,2 ]
Ugail, H. [3 ]
Poterlowicz, K. [1 ]
机构
[1] Ctr Skin Sci, Plast Surg & Burns Res Unit, Bradford, W Yorkshire, England
[2] Bradford Teaching Hosp, Bradford, W Yorkshire, England
[3] Univ Bradford, Ctr Visual Comp, Bradford, W Yorkshire, England
[4] Pinderfields Gen Hosp, Wakefield, England
[5] Univ Coll Dublin, Charles Inst Dermatol, Dublin, Ireland
关键词
D O I
暂无
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
P25
引用
收藏
页码:E205 / E205
页数:1
相关论文
共 42 条
  • [1] Machine learning transition temperatures from 2D structure
    Sifain, Andrew E.
    Rice, Betsy M.
    Yalkowsky, Samuel H.
    Barnes, Brian C.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 105
  • [2] To Analyze the Various Machine Learning Algorithms That Can Effectively Process Large Volumes of Data and Extract Relevant Information for Personalized Travel Recommendations
    Karthiyayini J.
    Anandhi R.J.
    SN Computer Science, 5 (4)
  • [3] Incorporation of a biparietal narrowing metric to improve the ability of machine learning models to detect sagittal craniosynostosis with 2D photographs
    Anderson, Megan G.
    Jungbauer, Dana
    Leclair, Nathan K.
    Ahn, Edward S.
    Stoltz, Petronella
    Martin, Jonathan E.
    Hersh, David S.
    Bookland, Markus J.
    NEUROSURGICAL FOCUS, 2023, 54 (06)
  • [4] Combining OBIA approach and Machine Learning algorithm to extract photovoltaic panels from Sentinel-2 images automatically
    Ladisa, Claudio
    Capolupo, Alessandra
    Ripa, Maria Nicolina
    Tarantino, Eufemia
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXIV, 2022, 12262
  • [5] Thermal stability of 2D materials: Descriptor realization from machine learning
    Schleder, Gabriel
    Fazzio, Adalberto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [6] 3D shape assessment from 2D echocardiography using machine learning
    Bernardino, G.
    Butakoff, C.
    Nunez-Garcia, M.
    Sarvari, S.
    Rodriguez-Lopez, M.
    Crispi, F.
    Gonzalez-Ballester, M. A.
    De Craene, M.
    Bijnens, B.
    EUROPEAN HEART JOURNAL, 2017, 38 : 293 - 293
  • [7] From prediction to design: Recent advances in machine learning for the study of 2D materials
    He, Hua
    Wang, Yuhua
    Qi, Yajuan
    Xu, Zichao
    Li, Yue
    Wang, Yumei
    NANO ENERGY, 2023, 118
  • [8] Synthesising 2D Video from 3D Motion Data for Machine Learning Applications
    Mundt, Marion
    Oberlack, Henrike
    Goldacre, Molly
    Powles, Julia
    Funken, Johannes
    Morris, Corey
    Potthast, Wolfgang
    Alderson, Jacqueline
    SENSORS, 2022, 22 (17)
  • [9] Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing
    Frey, Nathan C.
    Akinwande, Deji
    Jariwala, Deep
    Shenoy, Vivek B.
    ACS NANO, 2020, 14 (10) : 13406 - 13417
  • [10] Using Machine Learning to Detect Rotational Symmetries from Reflectional Symmetries in 2D Images
    Ponse, Koen
    Kononova, Anna, V
    Loleyt, Maria
    van Stein, Bas
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,