Bioassay case study applying the maximin D-optimal design algorithm to the four-parameter logistic model

被引:3
|
作者
Coffey, Todd [1 ]
机构
[1] Seattle Genet Inc, Bothell, WA 98021 USA
关键词
experimental design; sigmoidal curve; cytotoxicity; nonlinear model; optimality; REGRESSION-MODELS; SIMPLEX-METHOD; CALIBRATION; PRODUCTS;
D O I
10.1002/pst.1702
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cell-based potency assays play an important role in the characterization of biopharmaceuticals but they can be challenging to develop in part because of greater inherent variability than other analytical methods. Our objective is to select concentrations on a dose-response curve that will enhance assay robustness. We apply the maximin D-optimal design concept to the four-parameter logistic (4PL) model and then derive and compute the maximin D-optimal design for a challenging bioassay using curves representative of assay variation. The selected concentration points from this 'best worst case' design adequately fit a variety of 4PL shapes and demonstrate improved robustness. Copyright (C) 2015 JohnWiley & Sons, Ltd.
引用
收藏
页码:427 / 432
页数:6
相关论文
共 23 条
  • [1] D-Optimal Design for a Five-Parameter Logistic Model
    Manukyan, Zorayr
    Rosenberger, William F.
    [J]. MODA 9 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2010, : 113 - 120
  • [2] Modified D-optimal design for logistic model
    Poursina, D.
    Talebi, H.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (02) : 428 - 437
  • [3] D-Optimal Design for Logistic Model with Maple
    Widiharih, Tatik
    Wilandari, Yuciana
    Warsito, Budi
    [J]. ADVANCED SCIENCE LETTERS, 2017, 23 (07) : 6567 - 6570
  • [4] Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model
    Zhang, Jiwei
    Lu, Jing
    Du, Hang
    Zhang, Zhaoyuan
    [J]. FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [5] Bayesian D-optimal designs for the two parameter logistic mixed effects model
    Abebe, Haftom T.
    Tan, Frans E. S.
    Van Breukelen, Gerard J. P.
    Berger, Martijn P. F.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 1066 - 1076
  • [6] D-optimal design for logistic model based on more precise approximation
    Hooshangifar, Mina
    Talebi, Hooshang
    Poursina, Davood
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (07) : 1975 - 1992
  • [7] An EM Algorithm for Fitting a Four-Parameter Logistic Model to Binary Dose-Response Data
    Gregg E. Dinse
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 221 - 232
  • [8] An EM Algorithm for Fitting a Four-Parameter Logistic Model to Binary Dose-Response Data
    Dinse, Gregg E.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2011, 16 (02) : 221 - 232
  • [9] Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation
    Abebe, H. T.
    Tan, F. E. S.
    Van Breukelen, G. J. P.
    Berger, M. P. F.
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1667 - 1690
  • [10] Bayesian D-optimal design for logistic regression model with exponential distribution for random intercept
    Maram, Parisa Parsa
    Jafari, Habib
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (10) : 1856 - 1868