Shapelet-Based Sparse Image Representation for Landcover Classification of Hyperspectral data

被引:0
|
作者
Roscher, Ribana [1 ]
Waske, Bjoern [1 ]
机构
[1] Free Univ Berlin, Inst Geog Sci, Dept Earth Sci, Berlin, Germany
关键词
COMPOSITE KERNELS; VECTOR MACHINES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel sparse representation-based classifier for landcover mapping of hyperspectral image data. Each image patch is factorized into segmentation patterns, also called shapelets, and patch-specific spectral features. The combination of both is represented in a patch-specific spatial-spectral dictionary, which is used for a sparse coding procedure for the reconstruction and classification of image patches. Hereby, each image patch is sparsely represented by a linear combination of elements out of the dictionary. The set of shapelets is specifically learned for each image in an unsupervised way in order to capture the image structure. The spectral features are assumed to be the training data. The experiments show that the proposed approach shows superior results in comparison to sparse-representation based classifiers that use no or only limited spatial information and behaves competitive or better than state-of-the-art classifiers utilizing spatial information and kernelized sparse representation-based classifiers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Shapelet-Based Sparse Representation for Landcover Classification of Hyperspectral Images
    Roscher, Ribana
    Waske, Bjoern
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1623 - 1634
  • [2] Sparse representation-based hyperspectral image classification
    Hairong Wang
    Turgay Celik
    Signal, Image and Video Processing, 2018, 12 : 1009 - 1017
  • [3] Sparse representation-based hyperspectral image classification
    Wang, Hairong
    Celik, Turgay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (05) : 1009 - 1017
  • [4] Hyperspectral Image Classification Based on Regularized Sparse Representation
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2174 - 2182
  • [5] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON KNN SPARSE REPRESENTATION
    Song, Weiwei
    Li, Shutao
    Kang, Xudong
    Huang, Kunshan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2411 - 2414
  • [6] Classification of Hyperspectral Image Based on Sparse Representation in Tangent Space
    Ni, Ding
    Ma, Hongbing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (04) : 786 - 790
  • [7] RANDOM SUBSPACE BASED SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Lin
    Rao, Yizhou
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2454 - 2456
  • [8] Manifold-Based Sparse Representation for Hyperspectral Image Classification
    Tang, Yuan Yan
    Yuan, Haoliang
    Li, Luoqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7606 - 7618
  • [9] Application of Discrete Wavelet Transform in Shapelet-Based Classification
    Yan, Lijuan
    Liu, Yanshen
    Liu, Yi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [10] Hyperspectral Image Classification With Robust Sparse Representation
    Li, Chang
    Ma, Yong
    Mei, Xiaoguang
    Liu, Chengyin
    Ma, Jiayi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 641 - 645