Area Problem for Univalent Functions in the Unit Disk with Quasiconformal Extension to the Plane

被引:5
|
作者
Agrawal, Sarita [1 ]
Arora, Vibhuti [2 ]
Mohapatra, Manas Ranjan [3 ]
Sahoo, Swadesh Kumar [2 ]
机构
[1] Inst Math Sci, 4 Cross Rd,CIT Campus, Chennai 600113, Tamil Nadu, India
[2] Indian Inst Technol Indore, Discipline Math, Khandwa Rd, Indore 453552, Madhya Pradesh, India
[3] Shantou Univ, Dept Math, 243 Daxue Rd, Shantou 515063, Guangdong, Peoples R China
关键词
Univalent functions; Area problem; Quasiconformal mappings; Quasiconformal extension; YAMASHITAS CONJECTURE; INTEGRAL MEANS;
D O I
10.1007/s41980-018-0184-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Delta (r, f) denote the area of the image of the subdisk | z| < r, 0 < r = 1, under an analytic function f in the unit disk | z| < 1. Without loss of generality, in this context, we consider only the analytic functions f in the unit disk with the normalization f (0) = 0 = f (0) -1. We set Ff (z) = z/ f (z). Our objective in this paper is to obtain a sharp upper bound of (r, Ff), when f varies over the class of normalized analytic univalent functions in the unit diskwith quasiconformal extension to the entire complex plane.
引用
收藏
页码:1061 / 1069
页数:9
相关论文
共 50 条